## We will be using the UNIT CIRCLE, the video on how to fill it out is in GOOGLE DOCS (in oncourse)

1) Find the measure of the angle in standard position.
$300^{\circ}$

2) Find the measure of the angle in standard position.
$150^{\circ}$ (they cancelled the bottom)

3) 

Sketch the angle in standard position.
$-135^{\circ}$
Rotate clockwise (-) $135^{\circ}$ instead of counter clockwise
Choose the correct answer below.
$\stackrel{*}{*}$

OB.

0 C

4)

Sketch the angle in standard position.
$60^{\circ}$ Rotate counter clockwise (+) $60^{\circ}$
Choose the correct answer below.
OA.

OB.

$\stackrel{c}{c}$

5) Find a positive angle less than $360^{\circ}$ that is coterminal with the given angle.
$410^{\circ}$

$$
410^{\circ}-360^{\circ} \text { will give you the conterminal angle } 50^{\circ}
$$

6) Find the measure of an angle between $0^{\circ}$ and $360^{\circ}$ coterminal with the given angle.
$600^{\circ}$
$600^{\circ}-360^{\circ}$ will give you the conterminal angle $240^{\circ}$
7) Find a positive angle less than $360^{\circ}$ that is coterminal with the given angle.
$-265^{\circ}$

$$
360^{\circ}-265^{\circ} \text { will give you the conterminal angle } 95^{\circ}
$$

8) Find a positive angle less than $360^{\circ}$ that is coterminal with the given angle.
$-60^{\circ}$
$360^{\circ}-60^{\circ}$ will give you the conterminal angle $300^{\circ}$
9) Find the exact values of the cosine and sine of the angle. Then find the decimal values.
$\theta=225^{\circ}$
Use the UNIT CIRCLE, the video on how to fill it out is in GOOGLE DOCS

$$
\cos \theta=-\frac{\sqrt{2}}{2} \quad \sin \theta=-\frac{\sqrt{2}}{2}
$$

Put in calculator: $-\sqrt{2} \div 2$
Round to hundredth (2 decimal places) $\operatorname{Cos} \theta=-0.71 \quad \sin \theta=-0.71$
10) For the angle, state in which quadrant the terminal side lies.
$26^{\circ}$
Quadrant I since it is between 0 and $90^{\circ}$
11) Name the quadrant in which the angle lies.
$515^{\circ}$
$600^{\circ}-515^{\circ}$ will give you the conterminal angle $155^{\circ}$, quadrant II

