

Find the values of the six trigonometric functions for the angle in standard position determined by the point (-5, -12).
* plot the point (-5,-12)

The -5 is the horizontal and the -12 is the vertical

the angle is always at the origin labeled θ

Use Pythagorean theorem to find the hypotenuse

$$a^{2} + b^{2} = c^{2}$$
 $(-5)^{2} + (-12)^{2} = x^{2}$
169 = x^{2} then $x = 13$

$$\sin = \frac{opp}{hyp} = \frac{-12}{13}$$

$$Csc = flip sin = \frac{13}{-12}$$

$$Cos = \frac{adj}{hyp} = \frac{-5}{13} \quad Tan = \frac{opp}{adj} = \frac{12}{5}$$

$$Cos = flip cos = \frac{13}{-5} \qquad Tan = flip tan = \frac{5}{12}$$

2)

Find the values of the six trigonometric functions for the angle in standard position determined by the point (-1, -2).

* plot the point (-1,-2)

The -1 is the horizontal and the -2 is the vertical

the angle is always at the origin labeled θ

Use Pythagorean theorem to find the hypotenuse

$$a^{2} + b^{2} = c^{2}$$
 $(-1)^{2} + (-2)^{2} = x^{2}$
 $146 = x^{2}$ then $x = \sqrt{5}$

$$(-1,-2)$$

$$\sin \theta = \frac{opp}{hyp} = \frac{-2}{\sqrt{5}}$$

$$Csc = flip sin = \frac{\sqrt{5}}{-2}$$

$$\cos \theta = \frac{adj}{hyp} = \frac{-1}{\sqrt{5}}$$

Sec = flip cos =
$$\frac{\sqrt{5}}{-1}$$
 Cot = flip tan = $\frac{1}{2}$

$$\cos \theta = \frac{adj}{hyp} = \frac{-1}{\sqrt{5}}$$
 $\tan \theta = \frac{opp}{adj} = \frac{2}{1} = 2$

Cot = flip tan =
$$\frac{1}{2}$$

An aerial photograph is taken of a building. The photograph is made when the angle of elevation of the sun is 37°. The shadow is determined to be 70 feet long. How tall is the building?

Diagram not given:

Make sure calculator is in degrees, you will see deg at the bottom of your screen. If not press DRG

$$y = opp$$

$$\tan 37^{\circ} = \frac{y}{70}$$

multiply when x is on top
$$70 \cdot \tan 37^\circ = 52.75$$

In \triangle ABC, find each value.

- 4)
- a. sin A
- b. sec A
- c. cot A

- d. csc B
- e. sec B
- f. tan B

Sin A =
$$\frac{opp}{hyp} = \frac{10}{26} = \frac{5}{13}$$
 Sec A = $\frac{hyp}{adj} = \frac{26}{24} = \frac{13}{12}$

Sec A =
$$\frac{hyp}{adi} = \frac{26}{24} = \frac{13}{12}$$

Cot A =
$$\frac{adj}{onn} = \frac{24}{10} = \frac{12}{5}$$

Csc B =
$$\frac{hyp}{opp} = \frac{26}{24} = \frac{13}{12}$$

Csc B =
$$\frac{hyp}{opp} = \frac{26}{24} = \frac{13}{12}$$
 sec B = $\frac{hyp}{adi} = \frac{26}{10} = \frac{13}{5}$ Tan B = $\frac{opp}{adi} = \frac{24}{10} = \frac{12}{5}$

Tan B =
$$\frac{opp}{adi} = \frac{24}{10} = \frac{12}{5}$$

5) In ΔGHI, ∠H is a right angle, GH = 15, and cos G = ¹⁵/₁₇.

$$X^2 + 15^2 = 17^2$$

$$x = \sqrt{17^2 - 15^2} = 8$$

a) Find Sin G in fraction and decimal form $\frac{8}{17} = .471$

b) Find Sin I in fraction and decimal form
$$\frac{15}{17} = .882$$

c) Find cos G in fraction and decimal form
$$\frac{15}{17} = .882$$

d) Find csc G in fraction and decimal form
$$\frac{172}{8} = 2.125$$
 flip sin G

e) Find cos I in fraction and decimal form
$$\frac{8}{17} = .471$$

f) Find sec G In fraction and decimal form
$$\frac{17}{15} = 1.133$$
 flip cos G

6) In \triangle ABC, \angle C is a right angle, AC = 24 and sin A = $\frac{24}{25}$ Find all other 5 trig functions of A.

$$X^2 + 24^2 = 25^2$$

$$X^2 + 24^2 = 25^2$$
 $x = \sqrt{25^2 - 24^2} = 7$

$$Sin A = \frac{opp}{hyp} = \frac{24}{25}$$

$$\cos A = \frac{adj}{hyp} = \frac{7}{25}$$

$$\operatorname{Tan} A = \frac{opp}{adj} = \frac{24}{7}$$

$$Csc A = flip sin = \frac{25}{24}$$

$$\sec A = \text{flip } \cos = \frac{25}{7}$$

Cot A = flip tan =
$$\frac{7}{24}$$

Find the length x. 7)

Label given sides first

Tan 35° =
$$\frac{42}{x}$$

(Round to the nearest tenth as needed.) Adj

divide when x is on bottom

$$42 \div \tan 35^{\circ} = 59.98$$

8) In \triangle ABC, \angle C is a right angle. Find the remaining side and angles.

$$b = 4, c = 5$$

(Round to the nearest tenth as needed.)

$$a^2 + b^2 = c^2$$

$$a^2 + b^2 = c^2$$
 $x^2 + 4^2 = 5^2 \rightarrow \sqrt{5^5 - 4^2} = 3$

9 In ∆ABC, ∠C is a right angle. Find the remaining side and angles. Round to the nearest tenth.

$$b = 1.4 c = 3.1$$

$$a^2 + b^2 = c^2$$

$$a^2 + b^2 = c^2$$
 $x^2 + 1.4^2 = 3.1^2 \rightarrow \sqrt{3.1^5 - 1.4^2} = 2.8$

- (Round to the nearest tenth as needed.)
- 10) A 140-ft redwood tree casts a shadow. Express the length x of the shadow as a function of the angle of elevation of the sun θ . Then find x when $\theta = 35^{\circ}$ and $\theta = 70^{\circ}$.

Express x as a function of θ .

(Simplify your answer.)

$$\tan 35^{\circ} = \frac{x}{140}$$

multiply when x is on top $140 \cdot \tan 35^{\circ} = 98 \text{ ft}$

$$\tan 70^{\circ} = \frac{x}{140}$$

multiply when x is on top 140 · tan 70° = 384.6 ft