1. Let $f(x)=5 x+7$ and $g(x)=3 x^{2}$. Perform the function operation and then find the domain of the result. $(\mathrm{f}+\mathrm{g})(\mathrm{x})$

Add the functions: $3 x^{2}+5 x+7 \quad$ Domain is all reals
2. Let $f(x)=x+1$ and $g(x)=4 x^{2}$. Perform the function operation and then find the domain of the result.
$(\mathrm{f}-\mathrm{g})(\mathrm{x})$
Subtract f from g so g will be negative: $-4 x^{2}+x+1 \quad$ Domain is all reals
3) Let $f(x)=8-x$ and $g(x)=\frac{1}{x}$. Perform the function operation and then find the domain of the result.

$$
(g-f)(x)
$$

$(g-f)(x)=\frac{1}{x}+x-8$ (Simplify your answer.)
What is the domain of $(g-f)(x)$?
cannot have 0 on bottom of the fractionA. The domain of $g-f$ is the set of all $x \geq 0$.B. The domain of $g-f$ is the set of all real numbers.
C. The domain of $g-f$ is the set of all real numbers except $x=0$.
D. The domain of $\mathrm{g}-\mathrm{f}$ is the set of all $\mathrm{x} \leq 0$.
4) Let $f(x)=7-x$ and $g(x)=\frac{1}{x}$. Perform the function operation and then find the domain of the result.
$\frac{f}{g}(x) \quad \frac{7-x}{\frac{1}{x}}$ flip bottom and multiply $x(7-x)$
$\frac{f}{g}(x)=7 x-x^{2}$ (Simplify your answer.)
What is the domain of $\frac{f}{g}(x)$?
cannot have 0 on bottom of the fraction, have to look at original
A. The domain of $\frac{f}{g}$ is the set of all real numbers except $x=0$.
5) Let $f(x)=2 x^{2}+3 x-5$ and $g(x)=x-1$. Perform the function operation and then find the domain.
$(f+g)(x)$
has no fractions so no exclusions for domain
$(f+g)(x)=2 x^{2}+4 x-6$ (Simplify your answer.)
What is the domain of $(\mathrm{f}+\mathrm{g})(\mathrm{x})$?A. The domain of $\mathrm{f}+\mathrm{g}$ is the set of all $\mathrm{x} \leq 0$.
B. The domain of $f+g$ is the set of all real numbers.
6) Let $f(x)=2 x^{2}-11 x+12$ and $g(x)=x-4$. Perform the function operation and then find the domain of the result.

$$
(f \cdot g)(x)
$$

$(\mathrm{f} \cdot \mathrm{g})(\mathrm{x})=2 \mathrm{x}^{3}-19 \mathrm{x}^{2}+56 \mathrm{x}-48$ (Simplify your answer.)

$$
(x-4)\left(2 x^{2}-11 x+12\right) \quad \text { multiply out }
$$

What is the domain of $(f \cdot g)(x)$?

$$
x^{3}-\underline{11 x^{2}}+12 x-8 x^{2}+44 x-48 \quad \text { combine like terms }
$$A. The domain of $f \cdot g$ is the set of all $x \geq 0$.

B. The domain of $f \cdot g$ is the set of all real numbers except $x=0$.

$$
x^{3}-19 x^{2}+56 x-48
$$

C. The domain of $f \cdot g$ is the set of all real numbers.
7) Let $f(x)=2 x^{2}-21 x+40$ and $g(x)=x-8$. Perform the function operation and then find the domain of the result.
$\frac{f}{g}(x)$ factor $2 x^{2}-21 x+40$ by slide and divide

$$
\begin{aligned}
& x^{2}-21 x+80 \\
& \frac{(x-16)(x-5)}{2}
\end{aligned} \quad \frac{(x-8)(2 x-5)}{x-8}=2 x-5
$$

Domain is where bottom is zero $x \neq 8$
8) Let $f(x)=2 x-1$ and $g(x)=x^{2}+3$.

Find $(f \circ g)(0)$. plug 0 in for x into the g function first $\rightarrow=0^{2}+3=3$ then plug that answer into $f \rightarrow 2(3)-1=5$
9) Let $g(x)=-4 x$ and $h(x)=x^{2}+2$. Find $(g \circ h)(0)$.
plug 0 in for x into the h function first $\rightarrow=0^{2}+2=2$ then plug that answer into $f \rightarrow-4(2)=-8$
10) Let $f(x)=x^{2}$ and $g(x)=x-1$. Find $(f \circ g)(-2)$.
plug -2 in for x into the g function first $\rightarrow=(-2)-1=-3$ then plug that answer into $\mathrm{f} \rightarrow(-3)^{2}=9$
11) Suppose the function $f(x)=11.11 \times$ represents the number of Chinese yuan equivalent to \times British pounds and the function $g(y)=2.13 y$ represents the number of Mexican pesos equivalent to y Chinese yuan.
a. Write a composite function that represents the number of Mexican pesos equivalent to \times British pounds.
b. Find the value in Mexican pesos of an item that costs 30 British pounds.
a. The composite function is $(g \circ f)(x)=23.66 x$. Always g first $2.13 \cdot 11.11=23.66 x$
(Simplify your answer. Round to two decimal places as needed.)
b. The value of the item is 709.8 Mexican pesos. $\quad 23.66(30)=709.8$
(Round to two decimal places as needed.)
12) Let $f(x)=5 x+3$ and $g(x)=x^{2}-x+2$. Perform the function operation and then find the domain.

$$
f(x)+g(x)
$$

Add the functions: $5 x^{3}-5 x^{2}+10 x+3 x^{2}-3 x+6=5 x^{3}-2 x^{2}+7 x+6$ Domain is all reals
13) Let $f(x)=4 x+5$ and $g(x)=x^{2}-x+2$. Perform the function operation and then find the domain.

$$
g(x)-f(x)
$$

Subtract g from f so f will be negative: $x^{2}-x+2-(4 x+5)$

$$
x^{2}-x+2-4 x-5=x^{2}-5 x-3
$$

Domain is all reals
14) Let $f(x)=5 x+3$ and $g(x)=x^{2}-7 x+12$. Perform the function operation and then find the domain.

$$
\begin{aligned}
& f(x) \cdot g(x) \quad(5 x+3)\left(x^{2}-7 x+12\right) \quad \text { multiply out } \\
& 5 x^{3}-35 x^{2}+60 x+3 x^{2}-21 x+36 \text { combine like terms } \\
& 5 x^{3}-32 x^{2}+39 x+36 \\
& \text { Domain is all reals }
\end{aligned}
$$

15) Let $f(x)=2 x+5$ and $g(x)=x^{2}-5 x+6$. Perform the function operation and then find the domain.

$$
\frac{f(x)}{g(x)} \quad \frac{2 x+5}{x^{2}-5 x+6}
$$

What is the domain of $\frac{f(x)}{g(x)}$?
A. The domain of $\frac{f(x)}{g(x)}$ is the set of all real numbers.

$$
(x-3)(x-2) \quad x=3,2
$$

$\underbrace{}_{B}$. The domain of $\frac{f(x)}{g(x)}$ is the set of all real numbers except $x=2$ and $x=3$.
16) Let $f(x)=3 x-6$. Find $(f \circ f)(5)$.

$$
\begin{aligned}
& f(5)=3(5)-6=9 \\
& \text { then } f(9)=3(9)-6=21
\end{aligned}
$$

17)

Let $f(x)=5 x-1, h(x)=\frac{x-3}{3}$. Find $(f \circ h)(1) . \quad h(1)=\frac{1-3}{3}=-\frac{2}{3}$

$$
\text { then } f\left(-\frac{2}{3}\right)=5\left(=-\frac{2}{3}\right)-1=-\frac{13}{3}
$$

18)

Let $f(x)=3 x-3$ and $g(x)=x+7$. Find $f(g(x))$ and $g(f(x))$.

$$
\begin{array}{ll}
f(g(x)) \text { plug g into } f & 3(x+7)-3=3 x+21-3=3 x+18 \\
g(f(x)) \text { plug } f \text { into } g & (3 x-3)+7=3 x-3+7=3 x+4
\end{array}
$$

