6-6 Function Operations

Algebra 2

- Let f(x) = 5x + 7 and $g(x) = 3x^2$. Perform the function operation and then find the domain of the result. 1. (f+g)(x) Add the functions: $3x^2 + 5x + 7$ Domain is all reals Let f(x) = x + 1 and $g(x) = 4x^2$. Perform the function operation and then find the domain of the result. 2. (f - g)(x) Subtract f from g so g will be negative: $-4x^2 + x + 1$ Domain is all reals 3) Let f(x) = 8 - x and $g(x) = \frac{1}{x}$. Perform the function operation and then find the domain of the result. Subtract f from f so change all signs in f: (g - f)(x) $(g-f)(x) = \frac{1}{x} + x - 8$ (Simplify your answer.) What is the domain of (g - f)(x)? cannot have 0 on bottom of the fraction ○ A. The domain of g – f is the set of all x ≥ 0. B. The domain of g – f is the set of all real numbers C. The domain of g – f is the set of all real numbers except x = 0. O D. The domain of g - f is the set of all x ≤ 0. 4) Let f(x) = 7 - x and $g(x) = \frac{1}{x}$. Perform the function operation and then find the domain of the result. $\frac{1}{\frac{1}{x}}$ flip bottom and multiply x(7 - x) $\frac{f}{q}(X)$ $\frac{f}{g}(x) = 7x - x^2$ (Simplify your answer.) What is the domain of $\frac{f}{q}(x)$? cannot have 0 on bottom of the fraction, have to look at original $\bigotimes^{*} A$. The domain of $\frac{f}{a}$ is the set of all real numbers except x = 0. Let $f(x) = 2x^2 + 3x - 5$ and g(x) = x - 1. Perform the function operation and then find the domain. 5) (f + q)(x)has no fractions so no exclusions for domain
 - $(f+g)(x) = 2x^2 + 4x 6$ (Simplify your answer.)

What is the domain of (f + g)(x)?

- A. The domain of f + g is the set of all x ≤ 0.
- B. The domain of f + g is the set of all real numbers.

6 Let $f(x) = 2x^2 - 11x + 12$ and g(x) = x - 4. Perform the function operation and then find the domain of the result.

(f•g)(x)

$$(f \cdot g)(x) = 2x^{3} - 19x^{2} + 56x - 48 \quad (Simplify your answer.) \quad (x-4)(2x^{2} - 11x + 12) \quad multiply out$$
What is the domain of $(f \cdot g)(x)$?
$$x^{3} - \underline{11x^{2}} + \underline{12x} - 8x^{2} + 44x - 48 \quad combine \ like \ terms$$

$$A. The domain of f \cdot g \ is the set of \ all \ x \ge 0.$$

$$B. The domain \ of \ f \cdot g \ is \ the \ set \ of \ all \ real \ numbers \ except \ x = 0.$$

$$x^{3} - \underline{19x^{2}} + 56x - 48$$

$$X^{3} - \underline{19x^{2}} + 56x - 48$$

7) Let $f(x) = 2x^2 - 21x + 40$ and g(x) = x - 8. Perform the function operation and then find the domain of the result.

 $\frac{f}{g}(x) = \frac{f}{x^2 - 21x + 40} \text{ by slide and divide}$ $\frac{x^2 - 21x + 80}{\frac{(x-16)(x-5)}{2} - 2} = \frac{(x-8)(2x-5)}{x-8} = 2x-5$

Domain is where bottom is zero $x \neq 8$

8 Let f(x) = 2x - 1 and $g(x) = x^2 + 3$.

Find (f o g)(0).

plug 0 in for x into the g function first $\rightarrow =0^2 + 3 = 3$ then plug that answer into f $\rightarrow 2(3)^2 - 1 = 5$

9 Let g(x) = -4x and h(x) = x² + 2. Find (g

h)(0).

plug 0 in for x into the h function first $\rightarrow =0^2 + 2 = 2$ then plug that answer into f $\rightarrow -4(2) = -8$

10 Let $f(x) = x^2$ and g(x) = x - 1. Find $(f \circ g)(-2)$.

plug -2 in for x into the g function first $\rightarrow =(-2) - 1 = -3$ then plug that answer into f $\rightarrow (-3)^{2^4} = 9$

11) Suppose the function f(x) = 11.11x represents the number of Chinese yuan equivalent to x British pounds and the function g(y) = 2.13y represents the number of Mexican pesos equivalent to y Chinese yuan.

a. Write a composite function that represents the number of Mexican pesos equivalent to x British pounds.
 b. Find the value in Mexican pesos of an item that costs 30 British pounds.

a. The composite function is $(g \circ f)(x) = 23.66x$. Always g first $2.13 \cdot 11.11 = 23.66x$ (Simplify your answer. Round to two decimal places as needed.)

b. The value of the item is 709.8 Mexican pesos. 23.66(30) = 709.8 (Round to two decimal places as needed.)

12) Let f(x) = 5x + 3 and $g(x) = x^2 - x + 2$. Perform the function operation and then find the domain.

f(x) + g(x)

Add the functions:
$$5x^3 - 5x^2 + 10x + 3x^2 - 3x + 6 = 5x^3 - 2x^2 + 7x + 6$$

Domain is all reals

13) Let f(x) = 4x + 5 and $g(x) = x^2 - x + 2$. Perform the function operation and then find the domain. g(x) - f(x)Subtract g from f so f will be negative: $x^2 - x + 2 - (4x+5)$ $x^2 - x + 2 - 4x - 5 = x^2 - 5x - 3$

Domain is all reals

14) Let f(x) = 5x + 3 and $g(x) = x^2 - 7x + 12$. Perform the function operation and then find the domain.

 $\begin{array}{l} \text{f(x)} \cdot \text{g(x)} & (5x+3)(x^2-7x+12) & \text{multiply out} \\ 5x^3-35\underline{x^2}+60x+\underline{3x^2}-21x+36 & \text{combine like terms} \\ 5x^3-32x^2+39x+36 \\ \text{Domain is all reals} \end{array}$

15) Let f(x) = 2x + 5 and $g(x) = x^2 - 5x + 6$. Perform the function operation and then find the domain.

 $\frac{f(x)}{g(x)} \qquad \frac{2x+5}{x^2-5x+6}$ What is the domain of $\frac{f(x)}{g(x)}$?
FACTOR BOTTOM FOR DOMAIN
O A. The domain of $\frac{f(x)}{g(x)}$ is the set of all real numbers.
(x-3)(x-2) x = 3,2
WB. The domain of $\frac{f(x)}{g(x)}$ is the set of all real numbers except x = 2 and x = 3.

16) Let
$$f(x) = 3x - 6$$
. Find $(f \circ f)(5)$.
then $f(9) = 3(9) - 6 = 9$
then $f(9) = 3(9) - 6 = 21$

17) Let
$$f(x) = 5x - 1$$
, $h(x) = \frac{x - 3}{3}$. Find $(f \circ h)(1)$. $h(1) = \frac{1 - 3}{3} = -\frac{2}{3}$
then $f(-\frac{2}{3}) = 5(=-\frac{2}{3}) - 1 = -\frac{13}{3}$

f(g(x)) plug g into f 3(x+7) - 3 = 3x + 21 - 3 = 3x + 18g(f(x)) plug f into g (3x-3) + 7 = 3x - 3 + 7 = 3x + 4