THOMPSON

Relations and Functions

Find the Domain	
and Range	
$\{(0,2),(3,4),(-3,-2),(2,4)\}$	
Domain:	Range:
$\{0,3,-3,2\}$	$\{2,4,-2$

Vertical Line Test

Circle is not a function because you can draw a vertical line and touch the graph in more than one point

1) List the domain and range of the relation.

$$
\{(3,-3),(7,7),(0,-3),(7,1)(3,3)\}
$$

The domain is $\{0,3,7\}$. (Domain are all x-values Range are all y-values
The range is $\{-3,1,3,7\}$ Don't duplicate numbers and put from least to greatest.
2) Determine whether the relation is a function.
$H=\{(6,-4),(5,-4),(4,-4),(3,-4),(2,-4)\}$
Does the given relation represent a function?
3)

Every year, a music hall of fame inducts legendary musicians and musical acts into its hall of fame. The table shows the number of inductees for each year. Complete a through \mathbf{c} below.

Look at each as an ordered pair: $(1,13)(2,9)$

Year	Number of Inductees	Year	Number of Inductees
2001	13	2004	9
2002	9	2005	8
2003	10	2006	6

b. Represent the data using ordered pairs. Choose the correct set of ordered pairs below.
A. $\{(1,6),(2,8),(3,9),(4,10),(5,9),(6,13)\}$
B. $\{(1,13),(2,9),(3,10),(4,9),(5,8),(6,6)\}$
C. $\{(1,6),(2,9),(3,10),(4,9),(5,8),(6,13)\}$

4) Every year a hall of fame inducts legendary people to the hall. The table shows the number of inductees for each year. What are the domain and range of this relation?

Year	2000	2001	2002	2003	2004
Number of Inductees	23	36	21	41	31

The domain is $\{2000,2001,2002,2003,2004\}$.
(Use a comma to separate answers as needed.)
The range is $\{21,23,31,36,41\}$.
(Use a comma to separate answers as needed.)
5) Determine whether the relation is a function.

Domain Range

6) Determine whether the relation is a function.

YES, because every element of the domain goes to exactly on element of the range

7) Determine if the graph is a function. Is this the graph of a function?

Yes
Vertical line test
No

8) Given $f(x)=21 x+10$, find $f(7)$.
$f(7)=157$

$$
21(7)+10=157
$$

9) Given $f(x)=20 x+14$, find $f(4)$.

$$
20(4)+14=94
$$

Find the domain and range of the relation and 10) determine whether it is a function.

What is the domain of the relation?
A. $-3<x<3$B. $-6<x<6$
C. $-1<x<\infty$

Domain is where the graph is left to right
D. $-\infty<x<\infty$ and parabola is always all reals (infinity is always <)

What is the range of the relation?
A. $-6<y<6$
Range is where the graph is from bottom to top
B. $-1 \leq y<\infty$
notice it includes -1 (\leq) but infinity is always <
C. $-3<y<3$

Is the relation a function?
Vertical line test
\bigcirc
No
(*) Yes
11) Determine if the graph is a function.
vertical line test

Is this the graph of a function?

- No
(v) Yes

12) Given $f(x)=18 x+13$, find $f(7)$.
$18(7)+13=139$

Find the domain and range of the relation and determine whether it is a function.

left to right

bottom to top

What is the domain of the relation? What is the range of the relation?
A. $-6<x<6$
A. $-1 \leq y<\infty$
B. $-1<x<1$
B. $-1<y<1$
C. $-6<y<6$
C. $-1<x<\infty$
D. $-\infty<y<\infty$

Is the relation a function?
Yes
No
14) Determine if the graph is a function.

15) Given $f(x)=21 x+13$, find $f(5)$.

$$
21(5)+13=118
$$

16) Find the domain and range of the relation and determine whether it is a function.

left to right

bottom to top
What is the domain of the relation? What is the range of the relation?
A. $-6<x<6$A. $-6<y<6$

Is the relation a function?
B. $-1<x<1$
B. $0 \leq y<\infty$
C. $-1<x<\infty$
C. $-1<y<1$
D. $-\infty<x<\infty$D. $-\infty<y<\infty$
Yes

- No

17) Graph the following function.
$y=\sqrt{x}+5$
Up 5 units

○.
○

18) Graph the following function.
$y=\sqrt{x+3}$
Left 3 units
$\stackrel{*}{*}$.
©

©
○

19) Use transformations to graph the function. State the domain and range.
$y=-\sqrt{x-5}-2$
Reflect across x-axis. Right 5, down2

What is the domain?
$[5, \infty) \quad$ left to right
(Type your answer in interval notation.)

What is the range? bottom to top
$(-\infty,-2]$
(Type your answer in interval notation.)
© A .

20) Graph the following function.

$$
y=x^{2}-4
$$

C.

21) Graph the relation. Determine the domain and range, and whether the relation is a function. $y=\sqrt{x}-7 \quad$ down 7
A.

left to right
What is the domain of the relation?

* A. $[0, \infty)$

bottom to top
What is the range of the relation?
A. $(-\infty,-7]$
B. $(-\infty, \infty)$
C. $[0, \infty)$
*D. $[-7, \infty)$
D. $(-\infty, \infty)$

22) Choose the graph that matches the function $y=(x+4)^{2}+2$.
A.

© B .

Is the relation a function?

* Yes
- No
c.
$\bigcirc \mathbf{D}$.

23) Use transformations to graph the function. State the domain and range.

$$
y=|x-2|+4
$$

Reflect across x-axis. Right 5, down2
What is the domain?
$(-\infty, \infty)$ left to right
(Type your answer in interval notation.)
What is the range? $[4, \infty)$ bottom to top (Type your answer in interval notation.)

24)

 Use transformations to graph the function. State the domain and range.$y=-\sqrt{x-4}+3$

Reflect across x-axis. Right 5, down2 What is the domain?
$[4, \infty) \quad$ left to right
(Type your answer in interval notation.)
What is the range?
($-\infty, 3$] bottom to top
(Type your answer in interval notation.)
25) Use transformations to graph the function. State
the domain and range.
$y=-\frac{1}{4} \sqrt{x+2}-3$
Reflect across x-axis. Right 5, down2

What is the domain?
$[-2, \infty) \quad$ left to right
(Type your answer in interval notation.)
What is the range?
$(-\infty,-3]$
(Type your answer in interval notation.)

© -
\square

$\bigcirc \mathbf{c}$

A.

c.

