
SECTION 2.4 Point Slope Form of Equations

Slope is
$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$$

SLOPE-INTERCEPT FORM

POINT-SLOPE FORM

1) Write the equation of the line, with the given properties, in slope-intercept form

Slope =
$$-6$$
, through $(-3,2)$

Plug slope, x and y (from the point) into the equation to find b

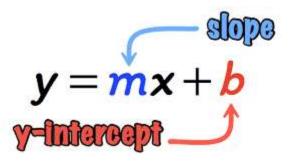
$$y = mx + b$$

$$2 = -6(-3) + b$$

2 = 18 + b move 18 to left and subtract it

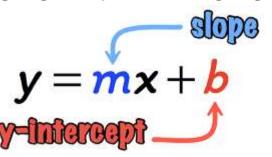
-16 = b then rewrite the equation using slope and b

$$y = -6x - 16$$


2) Find a point-slope equation of the line having the given slope and containing the given point.

$$m = \frac{6}{7}, (7,5)$$

What is an equation of the line?


In the equation below, type the slop appropriate positions.

$$y - 5 = \frac{6}{7}(x - 7)$$

3) Find a point-slope equation of the line having the given slope and containing the given point.

$$m = \frac{3}{4}, (5,4)$$

What is an equation of the line?

In the equation below, type the slope and the coordinates of the point in the appropriate positions.

$$y - 4 = \frac{3}{4}(x - 5)$$

4) Find a point-slope equation of the line having the given slope and containing the given point.

$$m = \frac{2}{3}, (8,6)$$

y = mx + b-intercept

What is an equation of the line?

In the equation below, type the slope and the coordinates of the point in the appropriate positions.

$$y - 6 = \frac{2}{3}(x - 8)$$

Write in point-slope form an equation of the line through the pair of points (4,0) and (14,8).

Type an equation of the line in point-slope form using one of the given points.

entiledit no talega to estentibreco

SLOPE=
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - 0}{14 - 4} = \frac{8}{10} = \frac{4}{5}$$

Then use 1st point (4,0) $y - 0 = \frac{4}{5}(x-4)$
 $y - y_1 = m(x - x_1)$ $y = \frac{4}{5}(x-4)$

6) Write in point-slope form an equation of the line through the pair of points (3,0) and (18,6).
Type an equation of the line in point-slope form using one of the given points.

SLOPE=
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 0}{18 - 3} = \frac{6}{15} = \frac{2}{5}$$

Then use 1st point (3,0) $y - 0 = \frac{2}{5}(x-3)$
 $y - y_1 = m(x - x_1)$
 $y - y_1 = m(x - x_1)$

7) Write in point-slope form an equation of the line through the pair of points (4,0) and (9,2).
Type an equation of the line in point-slope form using one of the given points.

SLOPE=
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 0}{9 - 4} = \frac{2}{5} = \frac{2}{5}$$

Then use 1st point (4,0) $y - 0 = \frac{2}{5}(x-4)$
 $y - y_1 = m(x - x_1)$
coordinates of a point (2,0) $y = \frac{2}{5}(x-4)$

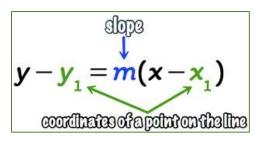
8) Write in point-slope form an equation of the line through the pair of points (3,0) and (9,5).
Type an equation of the line in point-slope form using one of the given points.

SLOPE=
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 0}{9 - 3} = \frac{5}{6}$$

Then use 1st point (3,0) $y - 0 = \frac{5}{6}(x-3)$
 $y - y_1 = m(x - x_1)$ $y = \frac{5}{6}(x-3)$

entleast no tated a forest ently to continuous

Slope is
$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$$


What is an equation of the line in point-slope form?

$$\triangle$$
 A. $x-4=-\frac{7}{6}(y-9)$

$$\bigcirc$$
 B. $y-4=\frac{7}{6}(x-9)$

$$rac{*}{\circ}$$
c. $y-4=-rac{7}{6}(x-9)$

$$\bigcirc$$
 D. $y = \frac{7}{6}x + \frac{29}{2}$

10) Write in point-slope form an equation of the line through the pair of points.

Slope is
$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$$

What is an equation of the line in point-slope form?

$$\triangle$$
 A. $x-4=-\frac{7}{6}(y-9)$

$$\bigcirc$$
 B. $y-4=\frac{7}{6}(x-9)$

$$rac{*}{\circ}$$
c. $y-4=-rac{7}{6}(x-9)$

$$O$$
 D. $y = \frac{7}{6}x + \frac{29}{2}$

$$y - y_1 = m(x - x_1)$$

$$\text{conflictes of a point on the line}$$

9) Write in point-slope form an equation of the line through the pair of points.

Type an equation of the line in point-slope form using one of the given points.

SLOPE=
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{12 - 4}{7 - 2} = \frac{8}{5}$$

Then use 1st point (2,4)
$$y - y_1 = m(x - x_1)$$

$$\text{coordinates of a point on the line}$$

$$y - 4 = \frac{8}{5}(x-2)$$

$$y-4=\frac{8}{5}(x-2)$$

10) Write in point-slope form an equation of the line through the pair of points.

Type an equation of the line in point-slope form using one of the given points.

SLOPE=
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 9}{5 - 3} = \frac{-5}{2} = -\frac{5}{2}$$

Then use 1st point (3,9)

$$y-9=-\frac{5}{2}(x-3)$$

Parallel Lines

Perpendicular Lines

PARALLEL LINES

PERPENDICULAR LINES

SAME SLOPE

$$m = \frac{3}{5} | \prod_{m} = \frac{3}{5}$$

$$m = \frac{3}{5} \perp m = -\frac{5}{3}$$

*change sign and take reciprocal

$$(x,y)$$
 m
11) Find an equation of the line through $(4,8)$ and parallel to $y = 3x - 5$. same slope $m = 3$

$$y = mx + b$$

 $8 = 3(4) + b$
 $8 = 12 + b$ move 12 to left
 $-4 = b$ then rewrite the equation using slope and b
 $y = mx + b$
 $y = 3x - 4$

$$(x,y)$$
 m

12) Find an equation of the line through (1,7) and parallel to y = 2x + 4. Same slope m = 2

$$y = mx + b$$

 $7 = 2(1) + b$
 $7 = 2 + b$ move 2 to left
 $5 = b$ then rewrite the equation using slope and b
 $y = mx + b$
 $y = 2x + 5$

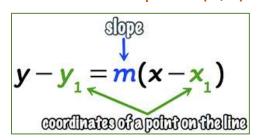
13) Write in point-slope form an equation of the line through the pair of points (4,0) and (16,10).
Type an equation of the line in point-slope form using one of the given points.

SLOPE=
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{10 - 0}{16 - 4} = \frac{10}{12} = \frac{5}{6}$$

Then use 1st point (4,0)
$$y - 0 = \frac{5}{6}(x-4)$$

$$y - y_1 = m(x - x_1)$$

$$y = \frac{5}{6}(x-4)$$


$$y = \frac{5}{6}(x-4)$$

14) Write in point-slope form an equation of the line through the pair of points.

Type an equation of the line in point-slope form using one of the given points.

SLOPE=
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 10}{5 - 2} = \frac{-7}{3} = -\frac{7}{3}$$

Then use 1st point (4,0)

$$y - 10 = \frac{7}{3}(x-2)$$

PARALLEL LINES

PERPENDICULAR LINES

SAME SLOPE

$$m = \frac{3}{5} | \lim_{m \to \frac{3}{5}}$$

OPPOSITE SLOPE

$$m = \frac{3}{5} \perp m = -\frac{5}{3}$$

*change sign and take reciprocal

15) Write the equation of the line through the given point. Use slope-intercept form.

(x ,y) m
(-5,8); perpendicular to y =
$$\left(\frac{6}{5}\right)$$
x - 5

Flip and change the sign $m = \frac{5}{6}$

$$y = mx + b$$

$$8 = \frac{5}{6} (-5) + b$$

 $8 = -\frac{25}{6} + b$ add $\frac{25}{6}$ to 8 in calculator to get b

 $\frac{73}{c}$ = b then rewrite the equation using slope and b

$$y = mx + b$$

$$y = mx + b$$

 $y = \frac{5}{6}x + \frac{73}{6}$

16) Write in point-slope form an equation of the line through the pair of points.

(5,11) and (3,6) SLOPE=
$$\frac{6-11}{3-5} = \frac{-5}{-2}$$

Then use 1st point (5,11)

What is an equation of the line in point-slope form?

$$\bigcirc A. y = -\frac{5}{2}x - \frac{3}{2}$$

$$\bigcirc$$
 B. $x-11=\frac{5}{2}(y-5)$

$$\bigcirc$$
 C. $y-11=-\frac{5}{2}(x-5)$

$$\nearrow$$
D. $y-11=\frac{5}{2}(x-5)$

$$y - y_1 = m(x - x_1)$$
confinates of a point on the line

(x,y) m 17) Find an equation of the line through (4,7) and parallel to y = 4x + 8.

same slope m= 4

$$y = mx + b$$

$$7 = 4(4) + b$$

$$7 = 16 + b$$
 move 12 to left

-9 = b then rewrite the equation using slope and b

$$y = mx + b$$

$$y = 4x - 9$$

PARALLEL LINES

PERPENDICULAR LINES

SAME SLOPE

$$m = \frac{3}{5} | \underline{ | m} = \frac{3}{5}$$

OPPOSITE SLOPE

$$m = \frac{3}{5} \perp m = -\frac{5}{3}$$

*change sign and take reciprocal

18) Write the equation of the line through the given point. Use slope-intercept form.

(x ,y) m
(-5,7); perpendicular to
$$y = \frac{5}{4}x - 3$$

Flip and change the sign $m = \frac{4}{5}$

$$y = mx + b$$

$$7 = \frac{4}{5}(-5) + b$$

$$7 = -4 + b \quad add 7 \text{ to 7 in calculator to get b}$$

$$11 = b \quad \text{then rewrite the equation using slope and b}$$

$$y = mx + b$$

 $y = \frac{4}{5}x + 11$

19) Write an equation in slope-intercept form of the line that passes through the given point and is perpendicular to the graph of the given equation.

change sign, reciprocal, reciprocal
$$m = -4$$
,
 $y = mx + b$
 $3 = (-4)(-4) + b$
 $3 = 16 + b$ move 16 to left
 $-13 = b$ then rewrite the equation using slope and b

$$y = mx + b$$

 $y = -4x - 13$

20) Write an equation in slope-intercept form of the line that passes through the given point as parallel to the graph of the given equation.

(x, y)

$$(-4, -7)$$
; $y = -3x + 1$
same slope $m = 3$
 $y = mx + b$
 $-7 = (-3)(-4) + b$
 $-7 = 12 + b$ move 12 to left
 $-19 = b$ then rewrite the equation using slope and b
 $y = mx + b$
 $y = -3x - 19$

21) Write an equation in slope-intercept form of the line that passes through the given point and is perpendicular to the graph of the given equation.

(x,y)
$$m_1$$

 $(-5,3)$; $y = 5x-3$ change sign, reciprocal, reciprocal $m = -5$
 $y = mx + b$
 $3 = (-5)(-5) + b$
 $3 = 25 + b$ move 25 to left
 $-22 = b$ then rewrite the equation using slope and b
 $y = mx + b$
 $y = -5x - 22$

22) Write an equation in slope-intercept form of the line that passes through the given point and is perpendicular to the graph of the given equation.

perpendicular to the graph of the given equation:
$$(x,y) \quad m_{(-3,4); y = \sqrt{3}} x - 2 \quad \text{change sign, reciprocal, reciprocal } m = -3$$

$$y = mx + b$$

$$4 = (-3)(-3) + b$$

$$4 = 9 + b \quad \text{move } 9 \text{ to left}$$

$$-5 = b \quad \text{then rewrite the equation using slope and } b$$

$$y = mx + b$$

$$y = -3x - 5$$