Standard Form of Quadratic Function

VERTEX: $x=\frac{-b}{2 a}$ Then plug x into equation to get y

Axis of symmetry is $\underline{x=}$

maximum minimum

1) Identify the vertex, the axis of symmetry, the maximum or minimum value, and the range of the parabola.

$$
y=x^{2}+4 x+5 \quad \text { Find vertex: } \quad x=\frac{-b}{2 a}=\frac{-4}{2(1)}=-2
$$

Then plug -2 into equation to get $y:(-2)^{2}+4(-2)+5=1$
Vertex $(-2,1) \quad$ axis of symmetry $x=-2$ (the x value in the vertex)

| Minimum value: $1 \quad$ range $y \geq 1$ (opens up) |
| :--- | :--- |

2) Identify the vertex, the axis of symmetry, the maximum or minimum value, and the range of the parabola.

$$
y=-x^{2}+4 x-8 \quad \text { Find vertex: } \quad x=\frac{-b}{2 a}=\frac{-4}{2(-1)}=2
$$

Then plug 2 into equation to get $y:-(2)^{2}+4(2)-8=-4$

Minimum value $-4 \quad$ range $y \leq-4$ (opens down)
3) Identify the vertex, the axis of symmetry, the maximum or minimum value, and the range of the parabola.

$$
y=-x^{2}-6 x-8 \quad \text { Find vertex: } \quad x=\frac{-b}{2 a}=\frac{6}{2(-1)}=-3
$$

Then plug -3 into equation to get $y:-(-3)^{2}-6(-3)-8=1$

Vertex $(-3,1)$	axis of symmetry $x=-3$ (the x value in the vertex)
Minimum value 1	range $y \leq 1$ (opens down)

4) The graph of a quadratic function is given.

Select the function's equation from the choices given. Find the vertex

Q
Q
(2)
5) The graph of a quadratic function is given. Select the function's equation from the choices given. Find the vertex

\odot
\odot
©

Choose the correct equation below.A. $f(x)=(x+2)^{2}-2$
B. $f(x)=(x-2)^{2}+2$
C. $f(x)=(x+2)^{2}+2$D. $f(x)=(x-2)^{2}-2$
$y=(x-h)^{2}+k$ vertex (h, k) change sign of h

Choose the correct equation below.A. $f(x)=(x+3)^{2}-3$
B. $f(x)=(x-3)^{2}-3$C. $f(x)=(x-3)^{2}+3$D. $f(x)=(x+3)^{2}+3$
$y=(x-h)^{2}+k$ vertex (h, k) change sign of h
6) The graph of a quadratic function is given. Select the function's equation from the choices given.

Transformation: up 5

Q
Q
ᄃ

Choose the correct equation below.A. $f(x)=x^{2}-10 x+25$
B. $f(x)=x^{2}+5$
C. $f(x)=x^{2}-5$
D. $f(x)=-x^{2}+5$
7) In the following exercise, find the coordinates of the vertex for the parabola defined by the given quadratic function.

$$
f(x)=3 x^{2}+12 x+4
$$

Find vertex: $\quad x=\frac{-b}{2 a}=\frac{-12}{2(3)}=-2$
Then plug -2 into equation to get $y: 3(-2)^{2}+12(-2)+4=-8$ Vertex $(-2,-8)$
8) Find the coordinates of the vertex for the parabola defined by the given quadratic function.

$$
f(x)=-x^{2}+2 x+2 \quad \text { Find vertex: } \quad x=\frac{-b}{2 a}=\frac{-2}{2(-1)}=1
$$

Then plug 1 into equation to get $y:-(1)^{2}+2(1)+4=3$
Vertex (1,3)
9) The graph of a quadratic function is given. Select the function's equation from the choices given.

Transformation: down 5

©

Q
©
10) The graph of a quadratic function is given. Select the function's equation from the choices given.

Transformation: reflects across x-axis, up 1
A. $f(x)=x^{2}+5$B. $f(x)=x^{2}-10 x+25$C. $f(x)=-x^{2}-5$
D. $f(x)=x^{2}-5$

○

Choose the correct equation below.

Choose the correct equation below.A. $f(x)=x^{2}-2 x+1$B. $f(x)=x^{2}+1$C. $f(x)=-x^{2}-1$
D. $f(x)=-x^{2}+1$
11) In the following exercise, find the coordinates of the vertex for the parabola defined by the given quadratic function.

$$
f(x)=3 x^{2}+6 x+5 \quad \text { Find vertex: } \quad x=\frac{-b}{2 a}=\frac{-6}{2(3)}=-1
$$

Then plug - 1 into equation to get y: $3(-1)^{2}+6(-1)+5=2$
Vertex $(-1,2)$
12) Find the coordinates of the vertex for the parabola defined by the given quadratic function.

$$
f(x)=-x^{2}-2 x+5 \quad \text { Find vertex: } \quad x=\frac{-b}{2 a}=\frac{2}{2(-1)}=-1
$$

Then plug - 1 into equation to get y : $-(-1)^{2}-2(-1)+5=6$ Vertex $(-1,6)$
13) Find the equation of the axis of symmetry and the coordinates of the vertex of the graph of the following function.

$$
y=x^{2}-8 x-5 \quad \text { Find vertex: } \quad x=\frac{-b}{2 a}=\frac{8}{2(1)}=4
$$

axis of symmetry $x=4$
Then plug 4 into equation to get $y:(4)^{2}-8(4)-5=-21$
Vertex (4,-21)
14) Find the equation of the axis of symmetry and the coordinates of the vertex of the graph of the following function.

$$
y=-4 x^{2}-24 \mathrm{x}-31 \text { Find vertex: } \quad x=\frac{-b}{2 a}=\frac{24}{2(-4)}=\frac{24}{-8}=-3
$$

axis of symmetry $x=-3$

Then plug - 3 into equation to get y: $-4(-3)^{2}-24(-3)-31=5$
Vertex $(-3,5)$

Sketch the graph of the function.
15) $y=x^{2}-2$ transformation: down 2 Choose the correct graph below.
OA
A.
в.
c.
D.

16)

Graph the quadratic equation and determine the x-intercepts, if they exist.

$$
y=x^{2}+8
$$

transformation: up 8
x-intercepts: none

17) Graph the quadratic equation and determine the x-intercepts, if they exist.

$$
y=x^{2}+1
$$

transformation: up 1
x-intercepts: none

18) Graph the function. Identify the axis of symmetry and the vertex.
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}+6 \quad$ Find vertex: $\quad \boldsymbol{x}=\frac{-\boldsymbol{b}}{2 \boldsymbol{a}}=\frac{4}{2(1)}=2$
axis of symmetry $x=2$
Then plug 2 into equation to get y :

$$
(2)^{2}-4(2)+6=\mathbf{2}
$$

19) Graph the function. Identify the axis of symmetry and the vertex.
$f(x)=x^{2}-2 x+10 \quad$ Find vertex: $\quad \boldsymbol{x}=\frac{-b}{2 a}=\frac{2}{2(1)}=1$
axis of symmetry $x=1$
Then plug 1 into equation to get y :
$(1)^{2}-2(1)+10=9$
Vertex $(1,9)$
20) Graph the function. Identify the axis of symmetry and the vertex.
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}+6 \quad$ Find vertex: $\quad \boldsymbol{x}=\frac{-\boldsymbol{b}}{2 \boldsymbol{a}}=\frac{2}{2(1)}=1$
axis of symmetry $x=1$
Then plug 1 into equation to get y :
$(1)^{2}-2(1)+6=5$
Vertex $(1,5)$

