FACTORING QUADRATIC EXPRESSIONS

1) $\mathbf{x}^{2}-49$ when 2 terms: use difference of two squares
$(x+7)(x-7)$ take square root, signs are different in answer
2) $\mathbf{3 6} \mathbf{x}^{\mathbf{2}} \mathbf{- 2 5}$ when 2 terms: use difference of two squares
$(6 x+5)(6 x-5) \quad$ take square root, signs are different in answer
3) $\mathbf{4 2} \mathbf{x}^{\mathbf{2}} \boldsymbol{+ 3 0 x}$ when 2 terms: use GCF
$6 x(7 x+5)$ take GCF, always has only one set of parentheses
4) $\mathbf{x}^{\mathbf{2}} \mathbf{- 1 2 x} \mathbf{+ 3 6}$ factors of 36 that add to get 12 , signs are the same $\left(1^{\text {st }}\right)$ $(x-6)(x-6)=$ must enter as $(x-6)^{2}$
5) $\mathbf{x}^{\mathbf{2}} \mathbf{+ 1 2 x + 2 7}$ factors of 27 that add ($2^{\text {nd }}$ SIGN IS +) to get 12 , $(x+9)(x+3) \quad$ signs are the same (first sign)
6) $\mathbf{x}^{\mathbf{2}} \mathbf{+ 5 x + 4}$ factors of 4 that add ($2^{\text {nd }}$ SIGN IS +) to get 5 , $(x+1)(x+4) \quad$ signs are the same (first sign)

EASY WAY TO GET FACTORS:
FACTORS 72
Write Factors: 1 and 72
then double the left column and half the right column

EASY WAY TO GET FACTORS
DOUBLE HALF
172
236
418
$8 \quad 9$
can't half 9 then we try 3
324
$6 \quad 12$
ALWAYS TRY 2, 3, 5, 7 ON
THE LEFT-HAND SIDE IF YOU CAN’T
7) $\mathbf{x}^{\mathbf{2}}+\mathbf{1 7 x} \mathbf{+ 7 2}$ factors of 72 that add to get 17 , $(x+9)(x+8) \quad$ signs are the same (first sign)
8) $\mathbf{x}^{2}+\mathbf{2 3 x}+\mathbf{4 2}$ factors of 42 that add to get 23 , $(x+21)(x+2) \quad$ signs are the same (first sign)
9) $\mathbf{x}^{\mathbf{2}} \mathbf{- 1 1 \mathbf { x } + \mathbf { 3 0 }}$ factors of 30 that add to get 11, $(x-5)(x-6) \quad$ signs are the same (first sign)
10) $\mathbf{x}^{\mathbf{2}} \mathbf{- 1 4 x + 4 5}$ factors of 45 that add to get 13 ,

EASY WAY TO GET FACTORS	
DOUBLE	HALF
1	30
2	15
can't half 15 then we try 3	
3	10
6	5
ALWAYS TRY $2,3,5,7$ ON	
THE LEFT-HAND SIDE IF YOU CAN'T	
HALF THE RIGHT	

11) $\mathbf{x}^{\mathbf{2}} \mathbf{+ 1 8 x + 8 0}$ factors of 80 that add to get 18 , $(x-9)(x-5) \quad$ signs are the same (first sign)
12) $\mathbf{x}^{\mathbf{2}} \mathbf{- 1 2 x} \mathbf{- 2 8}$ factors of 28 that subtract to get 12 ,
$(x-14)(x+2)$ signs are different (higher number gets $1^{\text {st }}$ sign from problem)
13) $\mathbf{x}^{\mathbf{2}}+\mathbf{2 x} \mathbf{- 3 5}$ factors of 35 that subtract to get 2 ,
$(x+7)(x-5)$ signs are different (higher number gets $1^{\text {st }}$ sign from problem)
14) $\mathbf{1 0} \mathbf{x}^{\mathbf{2}} \mathbf{+ \mathbf { 2 5 } \boldsymbol { x }}$ when 2 terms: use GCF
$5 x(2 x+5)$ take GCF, always has only one set of parentheses
15) $\mathbf{x}^{\mathbf{2}} \mathbf{+ 5 x} \mathbf{- 3 6}$ factors of 36 that subtract to get 5 ,
$(x-4)(x+9)$ signs are different (higher number gets $1^{\text {st }}$ sign from problem)
16) $\mathbf{x}^{2} \mathbf{- 6 4}$ when 2 terms: use difference of two squares
$(x+8)(x-8) \quad$ take square root, signs are different in answer
17) $\mathbf{v}^{\mathbf{2}} \mathbf{- 1 2 1}$ when 2 terms: use difference of two squares
$(x+11)(x-11)$ take square root, signs are different in answer
18) $\mathbf{x}^{\mathbf{2}} \mathbf{- 9 x} \mathbf{- 3 6}$ factors of 36 that subtract to get 9 ,
$(x-12)(x+3)$ signs are different (higher number gets $1^{\text {st }}$ sign from problem)
