

EASY WAY TO GET FACTORS	
DOUBLE	HALF
1	30
2	15
can't half	15
3	10
6	5
ALWAY we try 3	
THE LEFT HAND $2,3,5,7$	ON
CAN'T HALF THE RIGHT YOU	

\square

1) $4 \mathbf{x}^{2}+8 \mathbf{x}+\mathbf{3}$ number in front of x, check for a GCF then use slide and divide $x^{2}+8 x+12$ factors of 12 , add to get 8 , signs are the same + $(x+\underline{2})(x+\underline{6}) \quad$ the divide by 4

44 reduce each fraction $\frac{2}{4}=\frac{1}{2}$ and $\frac{6}{4}=\frac{3}{2}$ bottom \# goes in front $(2 x+1)(2 x+3)$
2) $2 m^{2}-13 m-24$
$m^{2}-13 m-48$ factors of 48 , subtract to get 13 , signs are different $(m-16)(m+3) \quad$ higher \# is - the divide by 2

22 reduce each fraction $\frac{16}{2}=8$ and $\frac{3}{2}$ bottom \# goes in front $(m-8)(2 m+3)$
3) $3 v^{2}-19 v-14$
$v^{2}-19 v-42=0$ factors of 42, subtract to get 19, signs are different $(\mathrm{v}-21)(\mathrm{v}+2)=0$ higher \# is - the divide by 3

33 reduce each fraction $\frac{21}{3}=7$ and $\frac{2}{3}$ bottom \# goes in front $(v-7)(3 v+2)$
4) $4 m^{2}-25 m-21$
$m^{2}-25 m-84$ factors of 84 , subtract to get 25 , signs are different $(m+\underline{3})(m-28) \quad$ higher \# is - \quad the divide by 4
444 reduce each fraction $\frac{3}{4}$ and $\frac{28}{4}=7$ bottom \# goes in front $(4 m-3)(m-7)$

5) $2 x^{2}+9 x-350$

$x^{2}+9 x-70$ factors of 70 , add to get 9 , signs are the different -$(x-\underline{5})(x+14) \quad$ the divide by 2

$$
\Leftrightarrow 22
$$

$(2 x-5)(x+7)$
SHORT CUT TO LIST ALL FACTORS: *double left side, half right side

Factors of 42

EASY WAY TO GET FACTORS	
DOUBLE	HALF
1 42 2 21 can't half 21 then we try 3 3 14 6 7 ALWAYS TRY $2,3,5,7$ ON THE LEFT-HAND SIDE IF YOU CAN'T HALF THE RIGHT	

Factors 72

EASY WAY TO GET FACTORS DOUBLE	
1 HALF 2 72 4 36 8 9 can't half 9 then we try 3 3 24 6 12 ALWAYS TRY 2, 3, 5, 7 ON THE LEFT-HAND SIDE IF YOU CAN'T	

Factors of 30

6) $5 x^{2}+24 x-5$
($x^{2}+24 x+25$ factors of 25 , subtract to get 24 , signs are the same + $(x+25)(x-1) \quad$ the divide by 5
$(x+5)(5 x-1)$
7) $3 x^{2}+11 x-4$
($x^{2}+11 x-12$ factors of 25 , subtract to get 24 , signs are the same + $(x+12)(x-1) \quad$ the divide by 3

33
$(x+4)(3 x-1)$
8) $\mathbf{8} \mathbf{y}^{2}+\mathbf{1 8 y} \mathbf{+ 9} y^{2}+18 y+72$ factors of 72 , add to get 18 , signs are the sane + $(y+12)(y+6) \quad$ the divide by 8

88 reduce $\frac{12}{8}=\frac{3}{2}$ and $\frac{6}{8}=\frac{3}{4}$ bottom \# goes in front $(2 x+3)(4 x+3)$
9) $4 x^{2}-4 x-3$
($x^{2}-4 x-12$ factors of 12 , subtract to get 4 , signs are the same + $(x+2)(x-6) \quad$ the divide by 4
$(2 x+)(3 x-2)$
10) $10 y^{2}+37 y+7$
$y^{2}+37 y+70$ factors of 70 , add to get 18 , signs are the same + $(y+12)(y+6) \quad$ the divide by 8

88 reduce $\frac{12}{8}=\frac{3}{2}$ and $\frac{6}{8}=\frac{3}{4}$ bottom \# goes in front $(2 x+3)(4 x+3)$

