SOLVE USING FACTORING

1) $\mathbf{x}^{\mathbf{2}} \mathbf{- 4}=\mathbf{0}$ when 2 terms: difference of two squares
$(x+2)(x-2)=0 \quad$ take square root, signs are different in answer
Set each equal to zero:
$x+2=0$ and $x-2=0$

$$
x=-2,2
$$

2) $\mathbf{(x + 9)}(\mathbf{x}-\mathbf{7})=\mathbf{0}$ Set each equal to zero:
$x+9=0$ and $x-7=0$

$$
x=-9,7
$$

3) $\mathbf{(x - 2) (3 x - 5)}=\mathbf{0}$ Set each equal to zero:
$x-2=0$ and $3 x-5=0$

$$
3 x=5
$$

$$
x=2, \frac{5}{3}
$$

4) $\mathbf{- 2 n}(\mathbf{5 n} \mathbf{- 1})=\mathbf{0}$ Set each equal to zero:
$-2 n=0$ and $5 n-1=0$

$$
\begin{array}{r}
5 x=1 \\
n=0, \frac{1}{5}
\end{array}
$$

5) $\mathbf{v}^{\mathbf{2}} \mathbf{- 1 2} \mathbf{v} \mathbf{+ 3 6} \mathbf{= 0}$ factors of 36 that add (same signs +) to get 12

$$
\begin{gathered}
(v-6)(v-6)=0 \quad \text { only put the answer once } \\
v-6=0 \\
x=6
\end{gathered}
$$

6) $\mathbf{p}^{\mathbf{2}} \mathbf{+ 8 p + 1 5}=\mathbf{0}$ factors of 15 that add (same signs +) to get 8 $(p+5)(p+3)=0$ Set each equal to zero:
$x+5=0$ and $x+3=0$
$x=-5,-3$
7) $\mathbf{x}^{\mathbf{2}} \mathbf{- 1 1 \mathbf { x }} \mathbf{+ 2 4}=\mathbf{0}$ factors of $\mathbf{2 4}$ that add (same signs +) to get 11,

$$
\begin{aligned}
& (x-8)(x-3)=0 \quad \text { signs are the same (first sign) } \\
& x-8=0 \text { and } x-3=0 \\
& x=8,3
\end{aligned}
$$

8) $\mathbf{p}^{\mathbf{2}} \mathbf{+ 7 p} \mathbf{- 3 0}=\mathbf{0}$ factors of 30 that subtract (different signs +) to get 7

$$
\begin{aligned}
& (p+10)(p-3)=0 \quad \text { Set each equal to zero: } \\
& p+10=0 \text { and } p+3=0 \\
& p=-10,-3
\end{aligned}
$$

9) $\mathbf{x}^{\mathbf{2}} \mathbf{- 1 2 1}=\mathbf{0}$ when 2 terms: difference of two squares
$(x+11)(x-11)=0 \quad$ take square root, signs are different in answer Set each equal to zero:

$$
\begin{aligned}
x+11 & =0 \text { and } x-11=0 \\
x & =-11,11
\end{aligned}
$$

10) $\mathbf{4} \mathbf{x}^{2}=\mathbf{3 2 x}$ move everything to the left $=0$
$4 x^{2}-32 \mathrm{x}=0$ when 2 terms: use GCF
$4 x(x-8)=0 \quad$ take GCF, always has only one set of parentheses

$$
\begin{aligned}
& 4 x= 0 \text { and } x-8=0 \\
& x=0,8
\end{aligned}
$$

11) $\mathbf{x}^{\mathbf{2}} \mathbf{- 1 1 \mathbf { x }} \mathbf{+ 2 4} \mathbf{= \mathbf { 0 }}$ factors of 24 that add (same signs +) to get 11, $(x-8)(x-3)=0 \quad$ signs are the same (first sign)

$$
x-8=0 \text { and } x-3=0
$$

$$
x=8,3
$$

EASY WAY TO GET FACTORS:

FACTORS 24
Write Factors: 1 and 24
then double the left column and half the right column

EASY WAY TO GET FACTORS	
DOUBLE	HALF
1	24
2	12
4	6
8	3
ALWAYS TRY 2, 3, 5, 7 ON	
THE LEFT-HAND SIDE IF YOU CAN'T	
HALF THE RIGHT	

$-2 n=0$ and $5 n-1=0 \quad$ set each equal to zero and solve for x $5 x=1 \quad$ divide by 5

$$
\mathrm{n}=0, \frac{1}{5}
$$

 $(t+1)(t+4)=0 \quad$ set each equal to zero and solve for x $t+1=0$ and $t+4=0$

$$
t=-1,4
$$

$\mathbf{1 4)} \mathbf{t}^{\mathbf{2}} \mathbf{- 1 4 t} \mathbf{+ 4 5} \mathbf{= \mathbf { 0 }}$ factors of 45 that add (same signs -) to get 14 $(t-9)(t-5)=0 \quad$ set each equal to zero and solve for x
$\mathrm{t}-9=0$ and $\mathrm{t}-5=0$

$$
t=9,5
$$

 $(v+9)(v+3)=0 \quad$ set each equal to zero and solve for x $v+9=0$ and $v+3=0$

$$
v=-9,-3
$$

 $(\mathrm{g}+7)(\mathrm{g}-5)=0$ (higher number gets $1^{\text {st }}$ sign from problem) $g+7=0$ and $g-5=0 \quad$ set each equal to zero and solve for x $\mathrm{g}=-7,5$
17) $\mathbf{2 \mathbf { s } ^ { \mathbf { 2 } }} \mathbf{+ 9} \mathbf{9}=\mathbf{3 5}$ move 35 to the left $=0$

\square

$2 s^{2}+9 s-\mathbf{3 5}=0 \quad$ SLIDE AND DIVIDE

$s^{2}+9 s-70=0$ factors of 70, subtract (different signs) to get 9
$(s-\underline{5})(s+14)=0$ the divide by 2
22
$s-\frac{5}{2}=0$ and $s+\frac{14}{2}=0$

$$
s=\frac{5}{2},-7
$$

18) $4 w^{2}+8 w=3$ move 3 to the left and set $=0$

$$
4 w^{2}+8 w-3=0 \text { SLIDE AND DIVIDE }
$$

$w^{2}+8 w+12=0$ factors of 12 that add (same signs +) to get 8
$(w+\underline{2})(w+\underline{6})=0$ the divide by 4
$w+\frac{2}{4}=0$ and $w+\frac{6}{4}=0 \quad$ reduce each fraction

$$
w=-\frac{1}{2},-\frac{3}{2}
$$

19) $5 m^{2}-26 m-24=0$
$m^{2}-26 m-120=0$ factors of 120 that subtract (different signs +) to get 26 $(m+4)(m-30)=0 \quad$ higher $\#$ is - the divide by 5
$\mathrm{m}+\frac{4}{5}=0$ and $\mathrm{m}-6=0$
$\mathrm{m}=-\frac{4}{5}, 6$
20) $4 s^{2}-25 s=21$ move 21 to the left and set $=0$

$$
4 s^{2}-25 s-21=0
$$

$s^{2}-25 s-84=0$ factors of 84that subtract (different signs +) to get 25 $(s+\underline{3})(s-28)=0 \quad$ higher \# is - the divide by 4 44
$s+\frac{3}{4}=0$ and $s-7=0$

$$
s=-\frac{3}{4}, 7
$$

