1) Find the square roots of $25 .-5,5$ because $(-5)^{2}=25$ and $(5)^{2}=25$
2) Find all the real square roots of $\frac{121}{144} \quad-\frac{11}{12}, \frac{11}{12}$ because $\left(-\frac{11}{12}\right)^{2}=\frac{121}{144}$ and $\left(\frac{11}{12}\right)^{2}=\frac{121}{144}$
3) A space plane skims the edge of space at 2000 miles per hour. Neglecting altitude, if the circumference of the planet is approximately 29,000 miles, how long wifl it take for the plane to travel around the planet?
distance $=$ rate \cdot time
$\boldsymbol{d}=\boldsymbol{r t}$
$29,000=2000 \mathrm{t}$

$\mathbf{t}=\mathbf{1 4 . 5}$ hours \quad| rate is 2000 mph |
| :--- |
| distance is 29,000 miles |
| divide by 2000 |

4) A space plane skims the edge of space at 5000 miles per hour. Neglecting altitude, if the circumference of the planet is approximately 25,000 miles, how long withit take for the plane to travel around the planet?

$$
\begin{aligned}
& \text { distance }=\text { rate } \cdot \text { time } \\
& \boldsymbol{d}=\boldsymbol{r t} \\
& 25,000=5000 \mathrm{t} \\
& \mathbf{t}=\mathbf{5} \text { hours }
\end{aligned}
$$

5) An architect designs a rectangular flower garden such that the width is exactly two-thirds of the length. If 330 feet of antique picket fencing are to be used to enclose the garden, find the dimensions of the garden.

$$
\begin{array}{ll}
\boldsymbol{P}=2 \boldsymbol{Z}+2 \boldsymbol{w} & p=\text { perimeter is } 330 \text { feet } \\
330=2 \boldsymbol{Z}+2\left(\frac{2}{3} \boldsymbol{l}\right) & w=\text { width is } \frac{2}{3} \boldsymbol{l} \\
330=2 \boldsymbol{Z}+\frac{4}{3} \boldsymbol{Z} & 2+\frac{4}{3}=\frac{10}{3} \\
330=\frac{10}{3} \boldsymbol{Z} & \text { divide by } \frac{10}{3} \\
\boldsymbol{Z}=99 \text { feet } & \\
\boldsymbol{w}=\frac{2}{3} \boldsymbol{Z} \rightarrow \frac{2}{3}(99)=66 \text { feet }
\end{array}
$$

6) An architect designs a rectangular flower garden such that the width is exactly two-thirds of the length. If 260 feet of antique picket fencing are to be used to enclose the garden, find the dimensions of the garden.

$$
\begin{array}{ll}
P=2 Z+2 \boldsymbol{w} & p=\text { perimeter is } 260 \text { feet } \\
260=2 \boldsymbol{Z}+2\left(\frac{2}{3} l\right) & w=\text { width is } \frac{2}{3} l \\
260=2 \boldsymbol{l}+\frac{4}{3} Z & 2+\frac{4}{3}=\frac{10}{3} \\
260=\frac{10}{3} Z & \text { divide by } \frac{10}{3} \\
Z=78 \text { feet } & \\
w=\frac{2}{3} l \rightarrow \frac{2}{3}(78)=52 \text { feet }
\end{array}
$$

7) The Cat is a high-speed catamaran auto ferry that operates between City A and City B. The Cat can make the trip in about $3 \frac{1}{2}$ hours at a speed of 56 mph . About how far apart are City A and City B? miles per hour

$$
\begin{aligned}
& \begin{array}{c}
\text { distance }=\text { rate } \cdot \text { time } \\
d=r t \\
d=56\left(3 \frac{1}{2}\right) \\
d=196 \text { miles }
\end{array} \quad \begin{array}{l}
r=\text { rate is } 56 \mathrm{mph} \\
t=\text { time is } 3 \frac{1}{2} \text { hours }
\end{array} \\
& \text { divide by } 3 \frac{1}{2} \text { hours }
\end{aligned}
$$

8) The Cat is a high-speed catamaran auto ferry that operates between City A and City B. The Cat can make the trip in about $2 \frac{1}{2}$ hours at a speed of 54 mph About how far apart are City A and City B? miles per hour

$$
\begin{aligned}
& \text { distance }=\text { rate } \cdot \text { time } \\
& \qquad \begin{array}{r}
d=r t \\
d=54\left(2 \frac{1}{2}\right) \\
d=135
\end{array} \quad \begin{array}{l}
r=\text { time is } 2 \frac{1}{2} \text { hours } \\
d=1
\end{array}
\end{aligned}
$$

9) A lawn is in the shape of a trapezoid with a height of 70 feet and bases of 40 feet and 160 feet. How many full bags of fertilizer must be purchased to cover the lawn if each full bag covers 4000 square feet and only full bags of fertilizer can be bought?

$$
\begin{aligned}
& \mathbf{A}=\frac{1}{2} \mathbf{h}\left(\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{2}\right) \\
& A=\frac{1}{2}(70)(40+160) \\
& A=7000 \rightarrow \text { bags are } 4000 \text { (divide) } \\
& A=\frac{7000}{4000}=1.75 \text { rounds up to } \mathbf{2} \text { bags }
\end{aligned}
$$

10) A lawn is in the shape of a trapezoid with a height of 40 feet and bases of 70 feet and 130 feet. How many full bags of fertilizer must be purchased to cover the lawn if each full bag covers 2000 square feet and only full bags of fertilizer can be bought?

$$
\begin{aligned}
& A=\frac{1}{2} \mathbf{h}\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right) \\
& A=\frac{1}{2}(40)(70+130) \\
& A=7000 \rightarrow \text { bags are } 2000 \text { (divide) } \\
& A=\frac{7000}{2000}=3.2 \text { rounds up to } 4 \text { bags }
\end{aligned}
$$

11) A lawn is in the shape of a trapezoid with a height of 60 feet and bases of 30 feet and 170 feet. How many full bags of fertilizer must be purchased to cover the lawn if each full bag covers 6000 square feet and only full bags of fertilizer can be bought?

$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$A=\frac{1}{2}(60)(30+170)$
$A=6000 \rightarrow$ bags are 6000 (divide)
$A=\frac{6000}{6000}=1 \mathbf{b a g}$
12) A "bullet" train set a new world record for train speed at 549 kilometers per hour during a manned test run on the Test Line in April 1999. The Test Line is 42.4 kilometers long. How many minutes would a test run on the Test Line last at this record-setting speed?
kilometers per hour

$$
\begin{gathered}
\text { distance }=\text { rate } \cdot \text { time } \quad \begin{array}{r}
r=549 \mathrm{kph} \\
\boldsymbol{d}=\boldsymbol{r}=42.2 \mathrm{~km} \\
42.2=549 \mathrm{t} \quad \text { divide by } 549
\end{array} \\
t=\frac{42.2}{549}=\text { enter then press } \mathbf{x} 60 \\
\text { multiply by } 60 \text { to get minutes } \mathbf{t}=4.612 \mathrm{~min}
\end{gathered}
$$

13) A "bullet" train set a new world record for train speed at 552 kilometers per hour during a manned test run on the Test Line in April 1999. The Test Line is 42.2 kilometers long. How many minutes would a test run on the Test Line last at this record-setting speed?

kilometers per hour

$$
\begin{array}{cl}
\text { distance }=\text { rate } \cdot \text { time } & r=552 \mathrm{kph} \\
\boldsymbol{d}=\boldsymbol{r t} & d=42.2 \mathrm{~km}
\end{array}
$$

$42.2=552 t \quad$ divide by 552
$t=\frac{42.2}{549}=$ enter then press $\mathbf{x} 60$
multiply by 60 to get minutes $\quad \mathbf{t}=4.59 \mathrm{~min}$
14) Find how long it takes Tran Nguyen to drive 630 miles on $\mathrm{I}-50$ if he merges onto $\mathrm{I}-50 \mathrm{at} 5 \mathrm{pm}$ and drives nonstop with his cruise control set on 70 mph .

$$
\begin{array}{cc}
\text { distance }=\text { rate } \cdot \text { time } & r=70 \mathrm{mph} \\
\boldsymbol{d}=\boldsymbol{r t r} & \mathrm{d}=630 \mathrm{~m} \\
630=70 \mathrm{t} & \mathbf{t}=\mathbf{9} \text { hours }
\end{array}
$$

15) Find how long it takes Tran Nguyen to drive 560 miles on I- 20 if he merges onto $\mathrm{I}-20$ at 9 pm and drives nonstop with his cruise control set on 70 mph .

$$
\begin{array}{cc}
\text { distance }=\text { rate } \cdot \text { time } & r=70 \mathrm{mph} \\
\boldsymbol{d}=\boldsymbol{r t r} & \mathrm{d}=560 \mathrm{~m} \\
560=70 \mathrm{t} & \mathbf{t}=\mathbf{8} \text { hours }
\end{array}
$$

