1) Multiply.
$\sqrt{5} \cdot \sqrt{6}$ Since both are under the radical we can multiply them together $\sqrt{5} \cdot \sqrt{6}=\sqrt{30}$ (Type an exact answer, using radicals as needed.)
2) Multiply.
$\sqrt{3} \cdot \sqrt{5}$ Since both are under the radical we can multiply them together $\sqrt{3} \cdot \sqrt{5}=\sqrt{15}$ (Type an exact answer, using radicals as needed.)
3) Multiply.
$\sqrt{3} \cdot \sqrt{7}$ Since both are under the radical we can multiply them together $\sqrt{3} \cdot \sqrt{7}=\sqrt{21}$ (Type an exact answer, using radicals as needed.)
4) Simplify the product.

$$
\sqrt{8} \cdot \sqrt{32} \quad \text { Both under radical } \sqrt{8 \cdot 32}=\sqrt{256}=16
$$

5) Simplify the product.

$$
\sqrt{2} \cdot \sqrt{8} \quad \text { Both under radical } \sqrt{2 \cdot 8}=\sqrt{16}=4
$$

6) Multiply if possible. Then simplify.

$$
\sqrt[3]{36} \cdot \sqrt[3]{6} \text { Both under radical } \sqrt[3]{36 \cdot 6}=\sqrt[3]{216}=6
$$

7) Multiply if possible. Then simplify.

$$
\sqrt[3]{5} \cdot \sqrt[3]{25} \text { Both under radical } \sqrt[3]{5 \cdot 25}=\sqrt[3]{125}=5
$$

8) Simplify the expression.

$$
\sqrt[3]{-12} \cdot \sqrt[3]{-18} \text { Both under radical } \sqrt[3]{(-12)(-18)}=\sqrt[3]{216}=6
$$

9) Simplify the expression.

$$
\sqrt[3]{-32} \cdot \sqrt[3]{-2} \quad \text { Both under radical } \sqrt[3]{(-32)(-2)}=\sqrt[3]{64}=4
$$

10) Divide and simplify.

$$
\frac{\sqrt{500}}{\sqrt{5}} \quad \text { Both under radical } \frac{\sqrt{500}}{\sqrt{5}}=\sqrt{\frac{500}{5}}=\sqrt{100}=10
$$

11) Divide and simplify.

$$
\frac{\sqrt[4]{243}}{\sqrt[4]{3}}
$$

$$
\text { Both under radical } \frac{\sqrt[4]{243}}{\sqrt[4]{3}}=\sqrt[4]{\frac{243}{3}}=\sqrt[4]{81}=3
$$

*circled number in example is the red \#s in the box above
12) Simplify the following expression.

$$
\sqrt{2}(\sqrt{2}+\sqrt{14})
$$

Distribute $(\sqrt{2} \cdot \sqrt{2})+(\sqrt{2} \cdot \sqrt{14})=2+\sqrt{28}=2+2 \sqrt{7}$
13) Simplify the following expression.

$$
\sqrt{2}(\sqrt{2}+\sqrt{10})
$$

Distribute $(\sqrt{2} \cdot \sqrt{2})+(\sqrt{2} \cdot \sqrt{10})=2+\sqrt{20}=2+2 \sqrt{5}$
14) Simplify the following expression.

$$
\sqrt{7}(\sqrt{7}+\sqrt{14})
$$

Distribute $(\sqrt{7} \cdot \sqrt{7})+(\sqrt{7} \cdot \sqrt{14})=7+\sqrt{98}=7+7 \sqrt{2}$
15) Simplify the following expression.

$$
\sqrt{7}(\sqrt{7}+\sqrt{21})
$$

Distribute $(\sqrt{7} \cdot \sqrt{7})+(\sqrt{7} \cdot \sqrt{21})=7+\sqrt{98}=7+7 \sqrt{3}$

More complex radical expressions

a.

$$
\sqrt[3]{\frac{12 x^{2}}{4 x}}=\sqrt[3]{3 x}
$$

b.

Multiply together $\sqrt{100}=10$

c.

Multiply together $\sqrt[3]{64}=4$
d.

$$
\text { Multiply together } \sqrt[3]{64}=4
$$

e.

$$
\text { Multiply together } \sqrt[3]{64}=4
$$

f.
FERFECT SQUARES 4, 9, 16, 25, 36, 49
Find what perfect square goes into 175 Find what perfect square goes into 175
$25 \cdot 7$
$\sqrt{175 x^{11}}$

25 comes out to 5 and 7 stays in
divide exponent by 2 ,
5 with 1 left over(1 stays in)

$$
5 x^{5} \sqrt{7 x}
$$

\square
4 comes out to 2 and 5 stays in
divide exponent by 2,
2 with 1 left over(1 stays in)

$$
2 x^{2} \sqrt{5 x}
$$

g.

27 comes out to 3 and 3 stays in
divide exponent by 3(root), if leftovers, they stay in

$$
-3 x^{2} y \sqrt[3]{3 y^{2}}
$$

h.

	PERFECT SQUARES 4, 9, 16, 25, 36, 49
Multiply: $\sqrt{24 x^{11}} \quad$ Find what perfect square goes into 24	
add exponents	$4 \cdot 6$
divide exponent by 2 and one left over	$\sqrt{24 x^{11}}$
$2 x^{5} \sqrt{6 x}$	

i.

j.

k.
$\frac{1}{2} \sqrt{50} \cdot \sqrt{8}$$\quad \mathbf{1 / 2} \mathbf{b h}$

