6.3 Binomial Radical Expressions Algebra 2

THOMPSON

1) Simplify by combining like radicals.

$$7\sqrt{7} + 3\sqrt{7}$$
 Combine like term – treat $\sqrt{7}$ as a variable

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. $7\sqrt{7} + 3\sqrt{7} = 10\sqrt{7}$ (Type an exact answer, using radicals as needed.) 7 + 3 = 10 and carry over the $\sqrt{7}$

B. The expression cannot be simplified.

2) Simplify by combining like radicals.

 $4\sqrt{3} + 5\sqrt{3}$ Combine like term – treat $\sqrt{3}$ as a variable $4\sqrt{3} + 5\sqrt{3} = 9\sqrt{3}$ 4 + 5 = 9 and carry over the $\sqrt{3}$

(Type an exact answer, using radicals as needed.)

3 Subtract. Assume all variables represent nonnegative real numbers.

 $6\sqrt{x} - 9\sqrt{x}$ combine like terms (\sqrt{x}) $-3\sqrt{x}$

4 Subtract. Assume all variables represent nonnegative real numbers.

5 \sqrt{x} - 9 \sqrt{x} combine like terms (\sqrt{x}) -4 \sqrt{x}

5) Simplify. Perfect squares: 4, 9, 16, 25, 36, 49

$$\sqrt{20} + \sqrt{45}$$
 Find which of the green #s go into 20 and 45
 $\sqrt{45}$ 95
 $\sqrt{20}$ $\sqrt{45}$ take square root of green and comes out
 $2\sqrt{5}$ + $3\sqrt{5}$ combine like terms = $5\sqrt{5}$

6) Simplify. $\sqrt{12} + \sqrt{75}$ $\sqrt{12} + \sqrt{75}$ $\sqrt{20} + \sqrt{45}$ $2\sqrt{3} + 5\sqrt{3}$ combine like terms = $7\sqrt{3}$ Perfect squares: 4, 9, 16, 25, 36, 49 Find which of the green #s go into 12 and 75 $\sqrt{2}, 3$ take square root of green and comes out $2\sqrt{3} + 5\sqrt{3}$ combine like terms = $7\sqrt{3}$

7) Add or subtract as indicated.

 $2\sqrt[3]{7} + 2\sqrt[3]{7} - 2\sqrt[3]{7}$ substitute $\sqrt[3]{7}$ with x 2x + 2x - 2x Combine like term 2x therefore $2\sqrt[3]{7}$

8) Add or subtract as indicated.

 $8\sqrt[3]{2} + 6\sqrt[3]{2} - 9\sqrt[3]{2}$ substitute $\sqrt[3]{2}$ with x 8x + 6x - 9x Combine like term 5x therefore $5\sqrt[3]{7}$

9) Add or subtract as indicated.

 $6\sqrt{5} - 8\sqrt{7} - 4\sqrt{5} + 9\sqrt{7}$ Substitute $\sqrt{5}$ as x and $\sqrt{7}$ as y 6x - 8y - 4x + 9y Combine like term 2x + y therefore $2\sqrt{5} + \sqrt{7}$

10) Add or subtract as indicated.

 $6\sqrt{2} - 2\sqrt{3} - 4\sqrt{2} + 9\sqrt{3}$ Substitute $\sqrt{2}$ as x and $\sqrt{3}$ as y 6x - 2y - 4x + 9y Combine like term 2x + 7y therefore $2\sqrt{2} + 7\sqrt{3}$ 11) Add as indicated. You will need to simplify terms before they can be combined.

 $\sqrt{3} + \sqrt{48}$ Perfect squares: 4, 9, 16, 25, 36, 49

Find which of the green #s go into 12 and 75 $\sqrt{3}$ + $\sqrt{48}$ take square root of green and comes out $\sqrt{3}$ + $4\sqrt{3}$ combine like terms = $5\sqrt{3}$

12) Add as indicated. You will need to simplify terms before they can be combined.

$$\sqrt{5} + \sqrt{80}$$
Perfect squares: 4, 9, 16, 25, 36, 49Find which of the green #s go into 12 and 75 $\sqrt{5}$ + $\sqrt{80}$ take square root of green and comes out $\sqrt{5}$ + $4\sqrt{5}$ combine like terms = $5\sqrt{5}$

- 13) Add as indicated. You will need to simplify terms before they can be combined.
 - $9\sqrt{75} + \sqrt{27}$ Perfect squares: 4, 9, 16, 25, 36, 49

Find which of the green #s go into 12 and 75 $\begin{array}{r}
253\\9\sqrt{75}\\+\sqrt{27}\\5\cdot9\sqrt{3}\\+3\sqrt{3}\\45\sqrt{3}\\+3\sqrt{3}\\\end{array}$ take square root of green and comes out $\begin{array}{r}
5\cdot9\sqrt{3}\\+3\sqrt{3}\\5\sqrt{3}\\+3\sqrt{3}\\\end{array}$ 14) Add as indicated. You will need to simplify terms before they can be combined.

6√98 + √50 **Perfect squares: 4, 9, 16, 25, 36, 49**

Find which of the green #s go into 12 and 75 492 492 492 $\sqrt{25}2$ $\sqrt{6\sqrt{98}} + \sqrt{27}$ take square root of green and comes out $7 \cdot 6\sqrt{2} + 5\sqrt{2}$ $42\sqrt{2} + 5\sqrt{2}$ combine like terms = $47\sqrt{2}$

15) Multiply. multiplying binomials – USE FOIL

$$(3 - \sqrt{7})(3 + \sqrt{7})$$

 $9 + 3\sqrt{7} - 3\sqrt{7} - \sqrt{7}^2$ Squaring cancels out square root $\sqrt{7}^2 = 7$

16) Multiply the pair of conjugates. multiplying binomials – USE FOIL

$$(3 - \sqrt{11})(3 + \sqrt{11})$$

 $9 + 3\sqrt{11} - 3\sqrt{11} - \sqrt{11}^2$ Squaring cancels out square root $\sqrt{11}^2 = 11$
 $9 - 11 = -2$

Multiply and simplify.

$$(8-5\sqrt{6})(3+4\sqrt{6})$$

9 - 7 = 2

multiplying binomials - USE FOIL

 $24 + 32\sqrt{6} - 15\sqrt{6} - 20 \cdot \sqrt{6}^2 \text{ combine like terms } (\sqrt{2})$ $24 + 17\sqrt{6} - 20(6) \text{ Squaring cancels out square root } \sqrt{2}^2 = 2$ $24 + 17\sqrt{6} - 120 \text{ combine like terms}$ $-96 + 17\sqrt{6}$

7. Multiply. Write twice $(8 + \sqrt{7})(8 + \sqrt{7})$ multiplying binomials – USE FOIL $(8 + \sqrt{7})^2$ $64 + 8\sqrt{7} + 8\sqrt{7} + \sqrt{7}^2$ Squaring cancels out square root $\sqrt{7}^2 = 7$ $64 + 16\sqrt{7} + 7$ combine like terms $71 + 16\sqrt{7}$

Multiply the pair of conjugates.

 $(4-\sqrt{11})(4+\sqrt{11})$ multiplying binomials – USE FOIL $16 + 4\sqrt{11} - 4\sqrt{11} - \sqrt{11}^2$ combine like terms ($\sqrt{11}$) they cancel 16 - 11 Squaring cancels out square root $\sqrt{11}^2 = 11$ 5

9. What is the simplified form of the following expression?

 $\sqrt{18} + \sqrt{72} - \sqrt{2}$ Perfect squares: 4, 9, 16, 25, 36, 49Find which of the green #s go into 18 and 72 $9 \cdot 2$ $36 \cdot 2$ $\sqrt{18}$ $\sqrt{72}$ take square root of green and comes out $3\sqrt{2} + 6\sqrt{2} - \sqrt{2}$ combine like terms = $8\sqrt{2}$

Perform the indicated operation and simplify.

 $(8\sqrt{5} - 5\sqrt{6})(6\sqrt{5} + 5\sqrt{6})$

multiplying binomials – USE FOIL

$$48 \cdot \sqrt{5}^{2} + 40\sqrt{30} - 30\sqrt{30} - 25 \cdot \sqrt{6}^{2}$$
 combine like terms ($\sqrt{2}$)

$$48(5) + 10\sqrt{30} - 25(6)$$
 Squaring cancels out square root $\sqrt{2}^{2} = 2$

$$240 + 10\sqrt{30} - 150$$
 combine like terms

$$90 + 10\sqrt{30}$$

11. Multiply and simplify.

 $(3-9\sqrt{5}) (7+3\sqrt{5})$ multiplying binomials – USE FOIL $21 + 9\sqrt{5} - 63\sqrt{5} - 27 \cdot \sqrt{5}^{2}$ combine like terms ($\sqrt{2}$) $21 - 54\sqrt{5} - 27(5)$ Squaring cancels out square root $\sqrt{2}^{2} = 2$ $21 - 54\sqrt{5} - 135$ combine like terms $-114 - 54\sqrt{5}$

Multiply the pair of conjugates.

 $(1-\sqrt{5})(1+\sqrt{5})$ multiplying binomials – USE FOIL $1+\sqrt{5}-\sqrt{5}-\sqrt{5}^{2}$ combine like terms ($\sqrt{5}$) they cancel 1-5 Squaring cancels out square root $\sqrt{11}^{2} = 11$ -4