6.3 Binomial Radical Expressions

Algebra 2
THOMPSON

1) Simplify by combining like radicals.
$7 \sqrt{7}+3 \sqrt{7} \quad$ Combine like term - treat $\sqrt{7}$ as a variable
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. $7 \sqrt{7}+3 \sqrt{7}=10 \sqrt{7}$
$7+3=10$ and carry over the $\sqrt{7}$
(Type an exact answer, using radicals as needed.)B. The expression cannot be simplified.
2) Simplify by combining like radicals.
$4 \sqrt{3}+5 \sqrt{3} \quad$ Combine like term - treat $\sqrt{3}$ as a variable
$4 \sqrt{3}+5 \sqrt{3}=9 \sqrt{3} \quad 4+5=9$ and carry over the $\sqrt{3}$
(Type an exact answer, using radicals as needed.)
3) Subtract. Assume all variables represent nonnegative real numbers.

$$
\begin{gathered}
6 \sqrt{x}-9 \sqrt{x} \quad \text { combine like terms }(\sqrt{x}) \\
-3 \sqrt{x}
\end{gathered}
$$

4) Subtract. Assume all variables represent nonnegative real numbers.

$$
\begin{gathered}
5 \sqrt{x}-9 \sqrt{x} \quad \text { combine like terms }(\sqrt{x}) \\
-4 \sqrt{x}
\end{gathered}
$$

5) Simplify.

Perfect squares: 4, 9, 16, 25, 36, 49

$$
\begin{aligned}
& \sqrt{20}+\sqrt{45} \text { Find which of the green \#s go into } 20 \text { and } 45 \\
& \sqrt{4} 5 \\
& \sqrt{20} \begin{aligned}
& 9.5 \\
& \sqrt{45} \text { take square root of green and con } \\
& 2 \sqrt{5}+3 \sqrt{5} \quad \text { combine like terms }=5 \sqrt{5}
\end{aligned}
\end{aligned}
$$

6) Simplify
$\sqrt{12}+\sqrt{75} \quad$ Find which of the green \#s go into 12 and 75
$\sqrt{(4) 3} \sqrt{\sqrt{20}}+\begin{aligned} & 25 \cdot 3 \\ & \sqrt{45}\end{aligned}$
take square root of green and comes out
$2 \sqrt{3}+5 \sqrt{3}$ combine like terms $=7 \sqrt{3}$
7) Add or subtract as indicated.
$2 \sqrt[3]{7}+2 \sqrt[3]{7}-2 \sqrt[3]{7} \quad$ substitute $\sqrt[3]{7}$ with x
$2 x+2 x-2 x \quad$ Combine like term
$\underline{2 x}$ therefore $2 \sqrt[3]{7}$
8) Add or subtract as indicated.
$8 \sqrt[3]{2}+6 \sqrt[3]{2}-9 \sqrt[3]{2} \quad$ substitute $\sqrt[3]{2}$ with x
$8 x+6 x-9 x \quad$ Combine like term $5 x$ therefore $5 \sqrt[3]{7}$
9) Add or subtract as indicated.

$$
\begin{aligned}
& 6 \sqrt{5}-8 \sqrt{7}-4 \sqrt{5}+9 \sqrt{7} \quad \text { Substitute } \sqrt{5} \text { as } x \text { and } \sqrt{7} \text { as } y \\
& 6 x-8 y-4 x+9 y \quad \text { Combine like term } \\
& 2 x+y \text { therefore } 2 \sqrt{5}+\sqrt{7}
\end{aligned}
$$

10) Add or subtract as indicated.

$$
\begin{aligned}
& 6 \sqrt{2}-2 \sqrt{3}-4 \sqrt{2}+9 \sqrt{3} \quad \text { Substitute } \sqrt{2} \text { as } x \text { and } \sqrt{3} \text { as } y \\
& 6 x-2 y-4 x+9 y \text { Combine like term } \\
& 2 x+7 y \quad \text { therefore } 2 \sqrt{2}+7 \sqrt{3}
\end{aligned}
$$

11) Add as indicated. You will need to simplify terms before they can be combined.

$$
\begin{aligned}
& \sqrt{3}+\sqrt{48} \text { Perfect squares: } 4,9,16,25,36,49 \\
& \text { Find which of the green \#s go into } 12 \text { and } 75 \\
& \sqrt{3}+\begin{array}{l}
16.3 \\
\sqrt{48} \\
\sqrt{3} \\
\\
+ \\
4 \sqrt{3} \text { combine like terms }=5 \sqrt{3}
\end{array}
\end{aligned}
$$

12) Add as indicated. You will need to simplify terms before they can be combined.

$$
\sqrt{5}+\sqrt{80} \quad \text { Perfect squares: } 4,9,16,25,36,49
$$

Find which of the green \#s go into 12 and 75

$$
\begin{aligned}
& \sqrt{16)} 5 \\
& \sqrt{5} \\
& \sqrt{5} \\
& +\quad 4 \sqrt{5} \text { combine like terms }=5 \sqrt{5}
\end{aligned}
$$

13) Add as indicated. You will need to simplify terms before they can be combined.
$9 \sqrt{75}+\sqrt{27} \quad$ Perfect squares: $4,9,16,25,36,49$
Find which of the green \#s go into 12 and 75

take square root of green and comes out
$5 \cdot 9 \sqrt{3}+3 \sqrt{3}$
$45 \sqrt{3}+3 \sqrt{3}$ combine like terms $=48 \sqrt{3}$
14) Add as indicated. You will need to simplify terms before they can be combined.

$$
6 \sqrt{98}+\sqrt{50} \quad \text { Perfect squares: } 4,9,16,25,36,49
$$

Find which of the green \#s go into 12 and 75
$\left\{\begin{array}{l}\frac{492}{(25} 2 \\ 6 \sqrt{98} \\ 7 \cdot 6 \sqrt{2}+\sqrt{27}\end{array}\right.$
take square root of green and comes out
$7 \cdot 6 \sqrt{2}+5 \sqrt{2}$
$42 \sqrt{2}+5 \sqrt{2}$ combine like terms $=47 \sqrt{2}$
15) Multiply. multiplying binomials - USE FOIL $(3-\sqrt{7})(3+\sqrt{7})$
$9+3 \sqrt{7}-3 \sqrt{7}-\sqrt{7}^{2}$ Squaring cancels out square root $\sqrt{7}^{2}=7$ $9-7=2$
16) Multiply the pair of conjugates. multiplying binomials - USE FOIL

$$
\begin{aligned}
& \quad(3-\sqrt{11})(3+\sqrt{11}) \\
& 9+3 \sqrt{11}-3 \sqrt{11}-\sqrt{11}^{2} \quad \text { Squaring cancels out square root } \sqrt{11}^{2}=11 \\
& 9-11=-2
\end{aligned}
$$

6. Multiply and simplify.

$$
(8-5 \sqrt{6})(3+4 \sqrt{6})
$$

$24+32 \sqrt{6}-15 \sqrt{6}-20 \cdot \sqrt{6}^{2}$ combine like terms $(\sqrt{2})$
$24+17 \sqrt{6}-20(6) \quad$ Squaring cancels out square root $\sqrt{2}^{2}=2$
$24+17 \sqrt{6}-120 \quad$ combine like terms $-96+17 \sqrt{6}$
7. Multiply. Write twice $(8+\sqrt{7})(8+\sqrt{7})$ multiplying binomials - USE FOIL

$$
(8+\sqrt{7})^{2}
$$

$$
\begin{array}{cl}
64+8 \sqrt{7}+8 \sqrt{7}+\sqrt{7}^{2} & \\
\text { Squaring cancels out square root } \sqrt{7}^{2}=7 \\
64+16 \sqrt{7}+7 & \\
71+16 \sqrt{7} &
\end{array}
$$

8. Multiply the pair of conjugates.

$$
(4-\sqrt{11})(4+\sqrt{11}) \text { multiplying binomials - USE FOIL }
$$

$$
16+4 \sqrt{11}-4 \sqrt{11}-\sqrt{11}^{2} \quad \text { combine like terms }(\sqrt{11}) \text { they cancel }
$$

$$
16-11 \quad \text { Squaring cancels out square root } \sqrt{11}^{2}=11
$$

$$
5
$$

9. What is the simplified form of the following expression?

$$
\sqrt{18}+\sqrt{72}-\sqrt{2} \quad \text { Perfect squares: } 4,9,16,25,36,49
$$

Find which of the green \#s go into 18 and 72

$9 \cdot 2$ $\sqrt{18}$${ }^{36 \cdot 2}$	
$3 \sqrt{2}+6 \sqrt{2}-\sqrt{2} \quad$ take square root of green and comes out	

10. Perform the indicated operation and simplify.

$$
(8 \sqrt{5}-5 \sqrt{6})(6 \sqrt{5}+5 \sqrt{6})
$$

multiplying binomials - USE FOIL
$48 \cdot \sqrt{5}^{2}+40 \sqrt{30}-30 \sqrt{30}-25 \cdot \sqrt{6}^{2} \quad$ combine like terms $(\sqrt{2})$

$$
\begin{array}{ll}
48(5)+10 \sqrt{30}-25(6) & \text { Squaring cancels out square root } \sqrt{2}^{2}=2 \\
240+10 \sqrt{30}-150 & \text { combine like terms } \\
90+10 \sqrt{30} &
\end{array}
$$

11. Multiply and simplify.

$$
(3-9 \sqrt{5})(7+3 \sqrt{5}) \quad \text { multiplying binomials - USE FOIL }
$$

$21+9 \sqrt{5}-63 \sqrt{5}-27 \cdot \sqrt{5}^{2} \quad$ combine like terms $(\sqrt{2})$
21-54 $\sqrt{5}-27(5) \quad$ Squaring cancels out square root $\sqrt{2}^{2}=2$
21-54 $\sqrt{5}-135 \quad$ combine like terms
$-114-54 \sqrt{5}$
12. Multiply the pair of conjugates.

$$
(1-\sqrt{5})(1+\sqrt{5}) \quad \text { multiplying binomials - USE FOIL }
$$

$1+\sqrt{5}-\sqrt{5}-\sqrt{5}^{2}$ combine like terms $(\sqrt{5})$ they cancel
1-5 Squaring cancels out square root $\sqrt{11}^{2}=11$ -4

