Lesson Solving Radical Equations

1) Solve. Check for extraneous solutions. get the radical by itself first - add 2 to the right

$$
\begin{array}{ll}
\sqrt{2 y+3}-2=1 & \sqrt{2 y+3}=3 \\
& 2 y+3=9 \\
& 2 y=6 \\
& y=3
\end{array}
$$

Square both sides
subtract 3 on the right divide by 2

CHECK: $\sqrt{2(3)+3}=3$

$$
\sqrt{9}=3 \quad \checkmark
$$

2) Solve. Check for extraneous solutions. get the radical by itself first - divide by 2

$$
\begin{array}{lll}
2 \sqrt{x}=22 & \sqrt{x}=11 \quad \text { Square both sides } \\
& x=121
\end{array}
$$

CHECK: $2 \sqrt{121}=22$

$$
2 \cdot 11=22
$$

3) Solve.

$$
2 \sqrt{x}-14=8
$$

get the radical by itself first - add 14 to the right

$$
2 \sqrt{x}=22 \quad \text { Divide by } 2
$$

$$
\sqrt{x}=11 \quad \text { square both sides }
$$

$$
x=121
$$

4) Solve.

$$
\begin{array}{lll}
\sqrt{9-x}=4 & \begin{array}{l}
\text { Square both sides } \\
\\
\\
\\
\\
-x=7 \\
\\
\\
x=-7
\end{array} & \begin{array}{l}
\text { subtract } 9 \text { on the right } \\
\text { divide by }-1
\end{array} \\
&
\end{array}
$$

5,6) Solve.

$$
\sqrt{4 x-3}=5
$$

Square both sides

$$
\begin{array}{ll}
4 \mathrm{x}-3=25 & \text { add } 3 \text { on the right } \\
4 \mathrm{x}=28 & \text { divide by } 4 \\
\mathrm{x}=7 &
\end{array}
$$

7) Solve.

$$
\sqrt{4 x+5}-3=2
$$

8) Solve.

$$
\sqrt{2 x+5}-6=1
$$

9) Solve the radical equation.

$$
\sqrt[3]{3 x+58}=4
$$

CUBE both sides

$$
\begin{array}{ll}
3 \mathrm{x}+58=64 & \text { subtract } 58 \text { on the right } \\
3 \mathrm{x}=6 & \text { divide by } 3 \\
\mathrm{x}=2 &
\end{array}
$$

10) Solve the radical equation.

$$
\sqrt[3]{4 x-48}-2=0
$$

get the radical by itself first - add 3 to the right

$$
\sqrt{4 x+5}=5 \quad \text { Square both sides }
$$

$$
4 x+5=25 \quad \text { subtract } 5 \text { on the right }
$$

$$
4 x=20 \quad \text { divide by } 4
$$

$$
y=5
$$

get the radical by itself first - add 6 to the right

$$
\sqrt{2 x+5}=7 \quad \text { Square both sides }
$$

$$
2 x+5=49 \quad \text { subtract } 5 \text { on the right }
$$

$$
2 \mathrm{x}=44 \quad \text { divide by } 2
$$

$$
y=22
$$

$$
\sqrt[n]{b}=b^{\frac{1}{n}}
$$

$$
\sqrt{x}=x^{1 / 2}
$$

$$
\sqrt[3]{x}=x^{1 / 3}
$$

11) Solve the radical equation. get the radical by itself first - subtract 1 to the right

$$
\begin{array}{ccc}
(2 x+2)^{1 / 3}=3 & \text { CUBE both sides } \\
2 x+2)^{1 / 3}+1=4 & x+27 & \begin{array}{l}
\text { subtract } 2 \text { on the right } \\
\\
2 x=25
\end{array} \\
& x=\frac{25}{2} &
\end{array}
$$

12) Solve the radical equation. get the radical by itself first - subtract 1 to the right

$$
(3 x+3)^{1 / 3}+1=6
$$

$$
\begin{aligned}
& (3 x+3)^{1 / 3}=5 \quad \text { CUBE both sides } \\
& 3 x+3=125 \quad \text { subtract } 3 \text { on the right }
\end{aligned}
$$

$$
3 \mathrm{x}=122 \quad \text { divide by } 3
$$

$$
x=\frac{122}{3}
$$

13) Solve the radical equation. get the radical by itself first - subtract 7 to the right

$$
(4 x+8)^{1 / 4}+7=9
$$

$$
(4 x+8)^{1 / 4}=2
$$

Raise to the $\mathbf{4}^{\text {th }}$ both sides

$$
4 x+8=16 \quad \text { subtract } 8 \text { on the right }
$$

$$
4 x=8 \quad \text { divide by } 4
$$

$$
x=2
$$

14) Solve the radical equation. get the radical by itself first - subtract 4 to the right

$$
\begin{array}{lll}
(3 \mathrm{x}+7)^{1 / 4}+4=6 & (3 x+7)^{1 / 4}=2 & \text { Raise to the } 4^{\text {th }} \text { both sides } \\
3 \mathrm{x}+7=16 & \begin{array}{l}
\text { subtract } 7 \text { on the right } \\
3 \mathrm{x}=9
\end{array} & \begin{array}{l}
\text { divide by } 3
\end{array} \\
\mathrm{x}=3 &
\end{array}
$$

15) Solve. Check for extraneous solutions.

$$
\begin{aligned}
& \sqrt{3 y+7}-\sqrt{2 \mathrm{y}+11}=0 \\
& \sqrt{3 y+7}=\sqrt{2 y+11}
\end{aligned}
$$

Move the right radical to the right side
Square both sides

$$
\begin{aligned}
& \begin{array}{l}
3 y+7=2 y+11 \quad \text { subtract } y \text { on the left } \\
y+7=11 \quad \text { subtract } 7 \text { to the right side } \\
y=4
\end{array}
\end{aligned}
$$

16) Solve. Check for extraneous solutions.

$$
\begin{aligned}
& \sqrt{10 \mathrm{y}+6}-\sqrt{9 \mathrm{y}+7}=0 \\
& \sqrt{10 y+6}=\sqrt{9 y+7}
\end{aligned}
$$

Move the right radical to the right side
Square both sides

$$
\begin{array}{ll}
10 y+6=9 y+7 & \text { subtract } y \text { on the left } \\
y+6=7 & \text { subtract } 6 \text { to the right side } \\
y=1
\end{array}
$$

