

Vertical stretch of 5

Shift right 3 units (when you take it out the

parenthesis it changes the sign)

$$f(x) = -5(x-3)^2 + 7$$

Negative in front

Shifts up 7 units

reflects across the x-axis

 $f(x) = \sqrt{-x}$ means it reflects across the y - axis

1 Graph the following function.

$$y = \sqrt{x} + 4$$

Shifts up 4

O B.

O C.

2. Graph the following function.

$$y = \sqrt{x} + 1$$

Choose the best graph.

Shifts up 1

O B.

D.

$$y = \sqrt{x - 4}$$

shifts right 4

Choose the correct graph below.

OA.

O B.

O C.

D.

4) Graph the following function.

$$y = \sqrt{x + 3}$$

Choose the best graph.

shifts left 3

O B.

O C.

Describe how the graph of the function $h(x) = -\sqrt{x}$ can be obtained from the basic graph. Then graph the function.

Start with the graph of $f(x) = \sqrt{x}$ and

reflect it across the x-axis.

Graph $h(x) = -\sqrt{x}$. Choose the correct graph below.

$$g(x) = -(x-2)^2 + 6$$

· · · ·

Start with the graph of $h(x) = x^2$. Shift it right 2 units. Then reflect it across the x-axis and shift it up 6 units.

7) Describe how the graph of the function can be obtained from one of the basic graphs.

$$g(x) = -(x-5)^2 + 4$$

...

Start with the graph of $h(x) = x^2$. Shift it right 5 units. Then reflect it across the x-axis and shift it up 4 units.

8) Describe how the given function can be obtained from one of the basic graphs. Then graph the function.

$$y = (x - 2)^2$$

9) Describe how the graph of g(x) = x - 4 can be obtained from one of the basic graphs. Then graph the function.

Start with the graph of y = x. Shift it down 4 units.

10) Describe how the given function can be obtained from one of the basic graphs. Then graph the function.

$$y = (x + 10)^2$$

$$g(x) = (x + 4)^2 + 1$$

✓✓✓✓✓

Describe how the given function can be obtained from one of the basic graphs.

Start with the graph of $f(x) = x^2$. Shift it left 4 units and then shift it up 1 unit.

Use the graphing tool to graph the equation.

12) Describe how the given function can be obtained from one of the basic graphs. Then graph the function.

$$g(x) = (x + 5)^2 - 2$$

Describe how the given function can be obtained from one of the basic graphs.

Start with the graph of $f(x) = x^2$. Shift it left 5 units and then shift it down 2 units.

13) Describe how the graph of the function can be obtained from the basic graph. Then graph the function.

$$f(x) = \sqrt{x + 7}$$

Start with the graph of $g(x) = \sqrt{x}$. Then shift it left 7 unit(s). (Type an integer or a simplified fraction.)

14) Describe how the graph of the function can be obtained from the basic graph. Then graph the function.

$$f(x) = \sqrt{x-4}$$

Start with the graph of $g(x) = \sqrt{x}$. Then shift it right 4 unit(s). (Type an integer or a simplified fraction.)

Choose the correct graph below.

15) Write an equation for a function that has a graph with the given characteristics.

The shape of $y = x^2$, but upside-down and shifted right 2 units and up 7 units.

Which of the following is the equation of the function?

 $y = -(x-2)^2 + 7$

16) Write an equation for a function that has a graph with the given characteristics.

The shape of $y = x^2$, but upside-down and shifted right 9 units and up 2 units.

$$y = -(x-9)^2 + 2$$

17) Write an equation for a function that has a graph with the given characteristics.

The shape of y = |x|, but shifted left 5 units and up 6 units.

$$\nearrow$$
D. $y = |x + 5| + 6$

18) Write an equation for a function that has a graph with the given characteristics.

The shape of $y = x^2$, but upside-down and shifted right 5 units

$$A. y = -(x-5)^2$$

19) Write an equation for a function that has a graph with the given characteristics.

The shape of y = |x|, but shifted left 6 units and up 8 units.

$$A. y = |x+6| + 8$$

20) Write an equation for a function that has a graph with the given characteristics.

The shape of $y = x^2$, but upside-down and shifted right 6 units

$$A. y = -(x-6)^2$$