7.3 Logarithmic Functions as Inverses Algebra 2 THOMPSON

D: $(-\infty, \infty) \mathrm{R}:(0, \infty)$
D: $(0, \infty) \mathrm{R}:(-\infty, \infty)$
*Inverse of each other

$$
\log _{e} x=\ln x
$$

1)

Write in logarithmic form.

$$
81=3^{4}
$$

2) Write in logarithmic form.

$$
\log _{4} 64=3
$$

$$
64=4^{3}
$$

3) Find the value of the logarithmic expression. $\log _{5} 125=x$ then write in exponential form: $5^{x}=125$ $\log _{5} 125 \quad x=3$
4) Find the value of the logarithmic expression. $\log _{3} 81=x$ then write in exponential form: $3^{x}=81$ $\log _{3} 81$
$x=4$
5) Write in logarithmic form. $\log _{5} 625=4$

$$
625=5^{4}
$$

$$
b^{0}=1 \quad \mathbf{x}^{-1}=\frac{1}{x} \quad x^{1 / 2}=\sqrt{x}
$$

Write in logarithmic form.
6)

2 is the base, -3 is exponent, $\frac{1}{8}$ is answer, negative exponent make a fraction

$$
\frac{1}{8}=2^{-3}
$$

$$
\log _{b} A=e \quad \log _{2} \frac{1}{8}=-3
$$

7) Write in logarithmic form.

$$
\begin{aligned}
& 0.0001=10^{-4} \\
& \text { Choose the correct logarithmic form below. }
\end{aligned}
$$

$10=\log _{-4} 0.0001$
$0.0001=\log _{10}-4$

- $-4=\log _{0.0001} 10$
($\vee-4=\log _{10} 0.0001$

8) Evaluate the following logarithm. $\log _{9} 3=x$ then write in exponential form: $9^{x}=3$ $\log _{9} 3$

$$
\mathrm{x}^{1 / 2}=\sqrt{x} \quad \mathrm{x}=1 / 2
$$

9) Find the value of the logarithmic expression.
$\log _{4} 64 \quad \log _{4} 64=x$ then write in exponential form: $4^{x}=64$

$$
x=3
$$

10) Find the value of the logarithmic expression.

$$
\log _{2} 32 \quad \log _{2} 32=x \text { then write in exponential form: } 2^{x}=32 \quad x=5
$$

D: $(-\infty, \infty) \mathrm{R}:(0, \infty)$
D: $(0, \infty) \mathrm{R}:(-\infty, \infty)$
*Inverse of each other
11) Graph the following function.

$$
y=\log _{8} x
$$

Choose the correct graph below.
OA
A.

B.

$\stackrel{\circ}{\circ}$

D
D.

12) How does the graph of the following function compare with the graph of the parent function, $y=\log _{b} x$.

$$
y=\log _{5} x+2
$$

Choose the correct graph to the right.
This graph is the same as the parent graph except that it is shifted 2 units up
A.

B
D.

13) Write as an exponential equation.
$\log _{3} 9=2$

$$
3^{2}=9
$$

14) Write in exponential form.

$$
-2=\log _{4} \frac{1}{16} \quad 4^{-2}=\frac{1}{16}
$$

