$$
\begin{aligned}
& \log _{b}(M N)=\log _{b}(M)+\log _{b}(N) \\
& \log _{b}\left(\frac{A I}{N}\right)=\log _{b}(M)-\log _{b}(N) \\
& \log _{b}\left(M^{p}\right)=p \log _{b}(M)
\end{aligned}
$$

1) Write the expression as a single logarithm. Adding means to multiply

$$
\log _{9} 3+\log _{9} 27 \quad \log _{9} 3 \cdot 27 \quad \log _{9} 81 \quad 9^{x}=81 \quad x=2
$$

2) Expand the logarithm. Simplify if possible. Multiplication means to add

$$
\log _{9} \mathrm{rs}
$$

Choose the correct answer below.

$$
\sigma_{\text {A. }} . \log _{8} r+\log _{9} s
$$

3) Write the expression as a single logarithm. $\log 3+\log 7$

Adding means to multiply
$\log 21$
4) Write the expression as a single logarithm. $5 \log 3+\log 4$

5 is the exponent of 3 bc it is out front

$$
\log 3^{5} \cdot 4 \quad \log 243 \cdot 4=\log 972
$$

5) Expand the following logarithm. Multiplication means to add $\log _{8} 64$ tar $\quad \log _{8} 64=2$

Choose the correct answer below.A. $\log _{8} 64 t q r=\log _{8} 64-\log _{8} t-\log _{8} q-\log _{8} r$B. $\log _{8} 64 t q r=\log _{8} 2 t\left(\log _{8} q+\log _{8} r\right)$C. $\log _{8} 64 t q r=2 \cdot \log _{8} t \cdot \log _{8} q \cdot \log _{8} r$
D. $\log _{8} 64 t q r=2+\log _{8} t+\log _{8} q+\log _{8} r$
6) Expand the logarithm. Simplify if possible.
$\log _{4} \frac{a}{b}$
Division means to subtract

Choose the correct answer below.A. $\left(\log _{4} a\right)\left(\log _{4} b\right)$
$\diamond_{\text {B. }} \log _{4} a-\log _{4} b$
C. $\frac{\log _{4} a}{\log _{4} b}$
D. $\log _{4} a+\log _{4} b$

CHANGE BASE FORMULA

7) Use the change-of-base formula to evaluate the expression.
close paranthesis $\log _{13} 23$

Base on bottom $\frac{\log 23}{\log 13}$
put in calculator $\log (23) \div \log (13)=1.222$
8) Use the change-of-base formula to evaluate the expression.
$\log _{15} 20$
Base on bottom $\frac{\log 20}{\log 15}$
put in calculator $\log (20) \div \log (15)=1.106$
9) Use the change-of-base formula to evaluate the expression. $\log _{15} 23$

Base on bottom $\frac{\log 23}{\log 15}$
put in calculator $\log (23) \div \log (15)=1.158$
10) Use the change-of-base formula to evaluate the expression.
close paranthesis

$$
\log _{11} 15 \quad \text { Base on bottom } \frac{\log 15}{\log 11}
$$

put in calculator $\log (15) \div \log (11)=1.129$
11) Use the properties of logarithms to evaluate the expression.

$$
\log _{3} 243-4 \log _{3} 3 \quad \frac{\log _{3} 243}{\log _{3} 3^{4}} \quad \frac{\log _{3} 243}{\log _{3} 81} \quad \text { divide } \log _{3} 3 \quad 3^{x}=3 x=1
$$

12) Write the following logarithm as a quotient of two common logarithms. Do not simplify the quotient. $\log _{3} 14$

Choose the correct answer below.
A. $\frac{\log _{11} 3}{\log _{11} 14}$B. $\frac{\log _{13} 3}{\log _{13} 14}$
C. $\frac{\log _{3} 14}{\log _{3} 13}$
D. $\frac{\log 14}{\log 3}$

