Equations of Lines

Slope-intercept	Point-slope	Standard
$y=m x+b$	$y-y_{1}=m\left(x-x_{1}\right)$	$A x+B y=C$
where m is slope and	where m is slope and	where A, B, and
b is the y-intercept	$\left(x_{1}, y_{1}\right)$ is a point on the	C are constants
line		

Let's look at the line going through the points

$$
(-2,-1) \text { and }(4,3)
$$

The simplest way to look
at the slope is
rise
run (rise over run)

To get from the point (-2 ,
$-1)$ to the point $(4,3)$, you rise up 4... and run 6.

The slope is
$\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{2}{3}$

(Notice that the slope goes uphill and $\frac{2}{3}$ is a positive number)
For $\frac{\text { rise }}{\text { run }}$, you can "rise" up or down... but, you ALWAYS "run" to the right. ALWAYS!

If you have to go down then the fraction is a negative but always start at the left point

Here's the official formula:

$$
\begin{gathered}
\text { If you're given two points } \\
\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{gathered}
$$

[If you are given:
 Two points

Finding the equation of the line in $y=m x+b$ form. Given: Two points. First find the slope (m) and then substitute one of the points x and y values into $y=m x+b$ along with the slope.

Point $(-2,-4) \&$ Point $(2,-2)$

Find the:

- slope $=\frac{\text { rise }}{\text { run }}=m=\frac{\text { change in } y^{\prime} s}{\text { change in } x^{\prime} s}$

$$
\frac{-2-(-4)}{2-(-2)}=\frac{-2+4}{2+2}=\quad \frac{2}{4}=\frac{1}{2}
$$

- Slope $=1 / 2$ and point ($2,-2$)
$y=m x+b$
$-2=1 / 2(2)+b$
$-2=1+b$
$-1=-1$
$-3=b \quad$ So!

$$
m=1 / 2 \text { and } b=-3
$$

$$
y=1 / 2 x-3
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

It's called the point-slope formula

Let's find the equation of the line that passes through the point $(4,-3)$ with a slope of -2 :

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=-2(4,-3) \\
& x_{1} y_{1} \\
& y-(-3)=-2(x-4) \\
& y+3=-2 x+8 \\
&-3-3 \\
& \hline y=-2 x+5
\end{aligned}
$$

